
GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 370

M. Janga Reddy is in the Department of Civil Engineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400 076, India and
D. Nagesh Kumar is in the Department of Civil Engineering, and
the Centre for Earth Sciences, Indian Institute of Science, Bangalore
560 012, India.
*For correspondence. (e-mail: nagesh@civil.iisc.ernet.in)

Computational algorithms inspired by
biological processes and evolution

M. Janga Reddy and D. Nagesh Kumar*

In recent times computational algorithms inspired by biological processes and evolution are gain-
ing much popularity for solving science and engineering problems. These algorithms are broadly
classified into evolutionary computation and swarm intelligence algorithms, which are derived
based on the analogy of natural evolution and biological activities. These include genetic algo-
rithms, genetic programming, differential evolution, particle swarm optimization, ant colony opti-
mization, artificial neural networks, etc. The algorithms being random-search techniques, use some
heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the
global optimal solutions. The bio-inspired methods have several attractive features and advantages
compared to conventional optimization solvers. They also facilitate the advantage of simulation and
optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world
problems. These biologically inspired methods have provided novel ways of problem-solving for
practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical,
chemical, electrical, civil, water resources and others fields. This article discusses the key features
and development of bio-inspired computational algorithms, and their scope for application in sci-
ence and engineering fields.

Keywords: Algorithms, biological processes, evolutionary computation, nonlinear optimization, swarm intelli-
gence.

IN the last few decades, several novel computational
methods have been proposed for the solution of complex
real-world problems. The development of various bio-
logically inspired computational algorithms has been rec-
ognized as one of the important advances made in the
field of science and engineering. These algorithms can
provide an enhanced basis for problem-solving and deci-
sion-making.
 It is well recognized that the complexity of today’s
real-world problems exceeds the capability of conven-
tional approaches1. The popular conventional methods
that have been widely used include mathematical optimi-
zation algorithms (such as Newton’s method and gradient
descent method that use derivatives to locate a local
minimum), direct search methods (such as the simplex
method and the Nelder–Mead method that use a search
pattern to locate optima), enumerative approaches such as
dynamic programming (DP), etc. Each of these tech-
niques in general requires making several assumptions

about the problem in order to suit a particular method,
and may not be flexible enough to adapt the algorithm to
solve a particular problem as it is, and may obstruct the
possibility of modelling the problem closer to reality2.
Many science and engineering problems generally
involve nonlinear relationships in their representation; so
linear programming (LP) may not be a suitable approach
to solve most of the complex practical problems. The
enumerative-based DP technique poses ‘curse-of-
dimensionality’ for a higher dimensional problem, due to
exponential increase in computational time with increase
in the number of state variables and the corresponding
discrete states. The gradient-based nonlinear program-
ming methods can solve problems with smooth nonlinear
objectives and constraints. However, in large and highly
nonlinear environment, these algorithms often fail to find
feasible solutions, or converging to suboptimal solutions
depending upon the degree of nonlinearity and initial
guess. Also, the conventional nonlinear optimization
solvers are not applicable for problems with non-
differentiable and/or discontinuous functional relation-
ships. The efficiency of algorithms varies depending
on the complexity of the problem. Thus, for one reason or
the other, conventional methods have several limitations
and may not be suitable for a broad range of practical
problems.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 371

 To surmount these problems, in recent times stochastic
search and optimization algorithms inspired by nature and
biological processes have been proposed and applied in
various fields of science and engineering. In the follow-
ing section details of these methods are briefly discussed.

Algorithms inspired by biological processes

The ideas from nature and biological activities have moti-
vated the development of many sophisticated algorithms
for problem-solving. These algorithms are broadly classi-
fied as evolutionary computation and swarm intelligence
(SI) algorithms. Evolutionary computation is a term used
to describe algorithms which were inspired by ‘survival of
the fittest’ or ‘natural selection’ principles3; whereas
‘swarm intelligence’ is a term used to describe the algo-
rithms and distributed problems-solvers which were
inspired by the cooperative group intelligence of swarm
or collective behaviour of insect colonies and other ani-
mal societies4.

Evolutionary algorithms

Evolutionary algorithms (EAs) are computational meth-
ods inspired by the process and mechanisms of biological
evolution. According to Darwin’s natural selection theory
of evolution, in nature the competition among individuals
for scarce resources results in the fittest individuals
dominating over the weaker ones (i.e. survival of the
fittest). The process of evolution by means of natural
selection helps to account for the variety of life and its
suitability for the environment. The mechanisms of evo-
lution describe how evolution actually takes place
through the modification and propagation of genetic
material (proteins). EAs share properties of adaptation
through an iterative process that accumulates and ampli-
fies beneficial variation through a trial and error process.
Candidate solutions represent members of a virtual popu-
lation striving to survive in an environment defined by
a problem-specific objective function. In each case, the
evolutionary process refines the adaptive fit of the popu-
lation of candidate solutions in the environment, typically
using surrogates for the mechanisms of evolution such as
genetic recombination and mutation3.
 In EAs, a population of individuals, each representing
a search point in the space of feasible solutions, is ex-
posed to a collective learning process which proceeds
from generation to generation. The population is ran-
domly initialized and subjected to the process of selec-
tion, recombination and mutation through stages known
as generations, such that the newly created generations
evolve towards more favourable regions of the search
space. The progress in the search is achieved by evaluat-
ing the fitness of all the individuals in the population,
selecting the individuals with the highest fitness value

and combining them to create new individuals with
increased likelihood of improved fitness. After some
generations, the solution converges and the best individ-
ual represents optimum (or near-optimum solution). The
standard structure of EA5 is shown in Figure 1.
 EAs provide solutions to many real-world, complex,
optimization problems that are difficult to tackle using
the conventional methods, due to their nature that implies
discontinuities of the search space, non-differentiable
objective functions, imprecise arguments and function
values2. EAs can be applied to many types of problems,
viz. continuous, mixed-integer, combinatoric, etc. Fur-
thermore, these algorithms can be easily combined with
the existing techniques such as local search and other
exact methods. In addition, it is often straightforward to
incorporate domain knowledge in the evolutionary opera-
tors and in the seeding of the population. Moreover, EAs
can handle problems with any combination of the chal-
lenges that may be encountered in real-world application
such as local optima, multiple objectives, constraints,
dynamic components, etc. The main paradigms of nature-
inspired evolutionary computation5 include genetic
algorithm (GA), genetic programming (GP), evolutionary
programming (EP), evolutionary strategies (ES), differen-
tial evolution (DE), etc.

Genetic algorithms

The most well-known paradigm of EAs is GA, having
widespread popularity in science, engineering and indus-
trial applications. The GA is inspired by population
genetics (including heredity and gene frequencies) and
evolution at the population level as well as Mendelian
understanding of the structure (such as chromosomes,
genes, alleles) and mechanisms (such as recombination
and mutation)6. Individuals of a population contribute
their genetic material (genotype) proportional to the suit-
ability of their expressed genome (phenotype) to the envi-
ronment, in the form of offspring. The next generation is
created through a process of mating that involves the
recombination of genomes of two individuals in the
population with the introduction of random perturbation

 Begin
 t ← 0
 initialize population P(t)
 evaluate P(t)
 While (not termination-condition) do
 Begin
 t ← t + 1
 select P(t) from P(t – 1)
 alter P(t)
 evaluate P(t)
 End
 End

Figure 1. Basic structure of an evolutionary algorithm.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 372

(called mutation). This iterative process may result in an
improved adaptive fit between the phenotypes of indi-
viduals in a population and the environment.
 The basic version of GA was developed by Holland3
based on binary encoding of the solution parameters
(called binary-coded GA). Later many variants of GA
were developed, including real-coded GAs, which work
directly with the real values of the parameters7. The main
steps involved in GA are:

(1) Initialize population using random generation.
(2) Evaluate the fitness of each individual in the popula-

tion.
(3) Repeat the following steps (for evolution) until the

termination criteria are satisfied:
 (a) Select the best-fit individuals for reproduction.
 (b) Perform genetic operations, crossover and

 mutation to generate new offspring.
 (c) Evaluate the individual fitness of new members.
 (d) Replace the least fit individuals with new

 individuals.
(4) Report the best solution of the fittest individual.

The algorithm can be terminated when the fitness value
has reached some predefined threshold or maximum
allowed time has elapsed or maximum number of genera-
tions is passed. The GA can be applied in many different
ways to solve a wide range of problems. The success of
GA to solve a specific problem depends on two major
decisions: proper representation of the problem and
defining a good measure of fitness. GAs have successful
applications in civil, mechanical, electrical, manufactur-
ing, economics, physics, chemistry, bioinformatics, water
resources, etc.1,5,7.

Genetic programming

GP is an inductive automatic programming technique for
evolving computer programs to solve problems8. The
objective of the GP algorithm is to use induction to
devise a computer program. This is achieved by using
evolutionary operators on candidate programs with a tree
structure to improve the adaptive fit between the popula-
tion of candidate programs and an objective function. The
GP is well suited to symbolic regression, controller
design and machine-learning tasks under the broader
name of function approximation.
 In GP, a population is progressively improved by
selectively discarding the not-so-fit population and breed-
ing new children from better populations. Like other EAs,
the GP solution starts with a random population of indi-
viduals (equations or computer programs). Each possible
solution set can be visualized as a ‘parse tree’ comprising
the terminal set (input variables) and functions (generally
operators such as +, –, *, /, logarithmic or trigonometric).

The ‘fitness’ is a measure of how closely a trial solution
solves the problem. The objective function, say, the
minimization of error between estimated and observed
value, is the fitness function. The solution set in a popula-
tion associated with the ‘best fit’ individuals will be
reproduced more often than the less-fit solution sets. The
subsequent generation of new population is achieved
through different genetic operations like reproduction,
crossover and mutation. Selection is generally made by
ranking the individuals according to their fitness. Indi-
viduals with better fitness are carried over to the next
generation. In crossover operation, the branches in the
‘parse tree’ of two parent individuals are interchanged to
generate two possible solution sets. The new solution sets
(children) depict some characteristics of their parents,
and genetic information is exchanged in the process;
whereas mutation operation simply consists of random
perturbation of node (function) in a tree with a probabi-
lity known as mutation probability. Mutation of a parse
tree will not change the tree structure, but changes the
information content in the parse tree. The mutation helps
to explore new domains of search and avoids the chances
of local trapping. The overall success of GP in solving a
given problem depends on proper selection and fine-
tuning of the operators and parameters.
 There are several variants of GP, like linear genetic
programming (LGP), gene expression programming
(GEP), multi-expression programming (MEP), Cartesian
genetic programming, etc. Among these, the LGP and
GEP are widely used in various fields of science and
engineering8,9.

Differential evolution

DE is a modern optimization technique in the family of
EAs introduced by Storn and Price10. It was proposed as a
variant of EAs to achieve the goals of robustness in opti-
mization and faster convergence to a given problem. DE
algorithm differs from other EAs in the mutation and
recombination phases. Unlike GAs, where perturbation
occurs in accordance with a random quantity, DE uses
weighted differences between solution vectors to perturb
the population.
 A typical DE works as follows: after random initializa-
tion of the population (where the members are randomly
generated to cover the entire search space uniformly), the
objective functions are evaluated and the following steps
are repeated until a termination condition is satisfied. At
each generation, two operators, namely mutation and
crossover are applied on each individual to produce a new
population. In DE, mutation is the main operator, where
each individual is updated using a weighted difference of
a number of selected parent solutions; and crossover acts
as background operator where crossover is performed on
each of the decision variables with small probability. The

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 373

offspring replaces the parent only if it improves the fit-
ness value; otherwise the parent is carried over to the new
population.
 There are several variants of DE, depending on the
number of weighted differences considered between solu-
tion vectors for perturbation and the type of crossover
operator (binary or exponential). For example, in DE/
rand-to-best/1/bin variant of DE, perturbation is made
with the vector difference of the best vector of the previ-
ous generation (best) and current solution vector, plus
single vector differences of two randomly chosen vectors
(rand) among the population. The DE variant uses bino-
mial (bin) variant of crossover operator, where the cross-
over is performed on each of the decision variables
whenever a randomly picked number between 0 and 1 is
within the crossover constant (CR) value. More details of
DE and their applications can be found in Price et al.11.

Swarm intelligence

The term swarm is used for the assembling of animals
such as fish schools, bird flocks and insect colonies (such
as ants, termites and honey bees) performing collective
activities. In the 1980s, ethologists conducted several
studies and modelled the behaviour of a swarm and came
up with some interesting observations12. The individual
agents of a swarm act without supervision, and each of
these agents has a stochastic behaviour due to its percep-
tion in the neighbourhood. Simple local rules, without
any relation to the global pattern, and interactions
between systematic or self-organized agents led to the
emergence of collective intelligence called ‘swarm intel-
ligence’ (SI). Swarms use their environment and
resources effectively by collective intelligence. Self-
organization is the key characteristic of a swarm system,
which results in global-level response by means of local-
level interactions4.
 The SI algorithms are based on intelligent human cog-
nition that derives from the interaction of individuals in a
social environment. In the early 1990s, researchers no-
ticed that the main idea of socio-cognition can be effec-
tively applied to develop stable and efficient algorithms
for optimization tasks2. In a broad sense, SI is an artificial
intelligence tool that focuses on studying the collective
behaviour of a decentralized system made up of a popula-
tion of simple agents interacting locally with each other
and with the environment. The SI methods are also called
behaviourally inspired algorithms.
 The main principles to be satisfied by a swarm algo-
rithm to have an intelligent behaviour are13:

• The swarm should be able to do simple space and time

computations (the proximity principle).
• The swarm should be able to respond to quality fac-

tors in the environment, such as the quality of food or
safety of location (the quality principle).

• The swarm should not allocate all of its resources
along excessively narrow channels and it should dis-
tribute resources into many nodes (the principle of
diverse response).

• The swarm should not change its mode of behaviour
upon every fluctuation of the environment (the princi-
ple of stability).

• The swarm must be able to change behaviour mode
when it matters (the principle of adaptability).

The main paradigms of biologically inspired SI algo-
rithms include ant colony optimization (ACO), particle
swarm optimization (PSO), artificial bee colony (ABC),
honey-bee mating optimization (HBMO) algorithms, etc.
The SI algorithms have many features in common with
the EAs. Similar to EAs, SI models are population-based
methods. The system is initialized with a population of
individuals (i.e. potential solutions). These individuals
are then manipulated over many generations by way of
mimicking the social behaviour of insects or animals, in
an effort to find the optima. Unlike EA, SI models do not
use evolutionary operators such as crossover and muta-
tion. A potential solution simply flies through the search
space by modifying itself according to its relationship
with other individuals in the population and the environ-
ment. In the 1990s, mainly two approaches: (i) based on
ant colony described by Dorigo14, and (ii) based on fish
schooling and bird flocking introduced by Eberhart and
Kennedy 15 had vastly attracted the interest of researchers.
Both approaches have been studied by many researchers
and their new variants have been introduced and applied
for solving several problems in different areas. Brief
descriptions of ACO, PSO and ABC algorithms with their
basic working principles are presented next.

Ant colony optimization

The ACO is inspired by the foraging search behaviour of
real ants and their ability in finding the shortest paths. It
is a population-based general search technique for the
solution of difficult combinatorial optimization problems.
The first ant system algorithm was proposed based on the
foraging behaviour exhibited by real ant colonies in their
search for food14. The algorithm is stimulated by the
pheromone trail-laying and training behaviour of real ant
colonies. The process by which the ants are able to find
the shortest paths2 is illustrated in Figure 2.
 Let H be home, F be the food source and A–B be an
obstacle in the route. At various times, the movement of
ants can be described as follows: (a) at time t = 0, the ants
choose left and right-side paths uniformly in their search
for food source; (b) at time t = 1, the ants which have
chosen the path F–B–H reach the food source earlier and
are retuning back to their home, whereas ants which have
chosen path H–A–F are still halfway in their journey to

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 374

Figure 2. Illustration of ant colony principle – how real ants find the shortest path in their search for food.

the food source; (c) at time t = 2, since the ants move at
approximately constant speed, those which chose the
shorter, right-side path (H–B–F) reach home more
rapidly, depositing more pheromone in the H–B–F route;
(d) at time t = 3, pheromone accumulates at a higher rate
on the shorter path (H–B–F), which is therefore automati-
cally preferred by the ants and consequently all ants will
follow the shortest path. The darkness of the shading is
approximately proportional to the amount of pheromone
deposited by ants.
 In general, ACO has many features, which are similar
to GA16,17:
• Both are population-based stochastic search tech-

niques.
• GA works on the principle of natural evolution or sur-

vival of the fittest, whereas ACO works on phero-
mone trail-laying behaviour of ant colonies.

• GA uses crossover and mutation as prime operators in
its evolution for the next generation, whereas ACO
uses pheromone trail and heuristic information.

• In ACO, trial solutions are constructed incrementally
based on the information contained in the environ-
ment and the solutions are improved by modifying the
environment through a form of indirect communica-
tion called stigmergy; on the other hand, in GA the
trial solutions are in the form of strings of genetic
materials and new solutions are obtained through the
modification of previous solutions.

• In GA, the memory of the system is embedded in the
trial solutions, whereas in ACO algorithms the system
memory is contained in the environment itself.

ACO algorithm: The ant system is the first ACO algo-
rithm14 that was proposed in 1991. The algorithm
searches for global optimum using a population of trial
solutions. First the system is randomly initialized with a
population of individuals (each representing a particular

decision point). These individuals are then manipulated
over many iterations using some guiding principles in
their search, in an effort to find the optima. The guiding
principle used within the ACO is a probability function
based on the relative weighting of pheromone intensity
and heuristic information (indicating the desirability of
the option) at a decision point. At the end of each itera-
tion, each of the ants adds pheromone to its path (set of
selected options). The amount of pheromone added is
proportional to the quality of the solution (for example, in
the case of minimization problems, lower-cost solutions are
better; hence they receive more pheromone). The pseudo-
code of a simple ACO algorithm17 is given in Figure 3.
 In early stages, these were mainly used for discrete
combinatorial optimization tasks, but later modified and
used for continuous optimization also. Thus, ACO is exhi-
biting interesting results for numerical problems as well
as for real-life applications in science and engineering16.
An important characteristic one should be aware of about
ACO is that it is a problem-dependent application17. In

Begin
 Initialize population
 Evaluate fitness of population
 While (stopping criterion not satisfied) do
 Position each ant in a starting node
 Repeat
 For each ant do
 Choose next node by applying the state transition rule
 Apply step by step pheromone update
 End for
 Until every ant has built a solution
 Evaluate fitness of population
 Update best solution
 Apply offline pheromone update
 End While
End

Figure 3. Pseudo-code of the ant colony optimization algorithm.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 375

order to adopt ACO and apply it to a particular problem,
the following steps are required:

• Problem representation as a graph or a similar struc-

ture easily covered by ants.
• Assigning a heuristic preference to the generated solu-

tions at each time step.
• Defining a fitness function to be optimized.
• Selection of appropriate model and parameters for the

ACO algorithm.

Particle swarm optimization

PSO is a SI method inspired by social behaviour of bird
flocking or fish schooling. The word ‘particle’ denotes
individuals in a swarm, for example, birds in a flock.
Each individual (particle) in a swarm behaves in a dis-
tributed way using its own intelligence and the collective
(group) intelligence of the swarm. As such, if one particle
discovers a good path to food, the rest of the swarm will
also be able to follow the good path instantly, even if
their location is far away in the swarm.
 The PSO was originally proposed in 1995 by Eberhart
and Kennedy15 as a population-based heuristic search
technique for solving continuous optimization problems.
The PSO shares many similarities with the GA. PSOs are
initialized with a population of random solutions and
searches for optima by updating generations. However, in
contrast to methods like GA, in PSO, no operators
inspired by natural evolution are applied to extract a new
generation of candidate solutions; instead PSO relies on
the exchange of information between individuals (parti-
cles) of the population (swarm). Thus, each particle
adjusts its trajectory towards its own previous best posi-
tion and towards the best previous position attained by
any other members in its neighbourhood (usually the
entire swarm)18.

PSO algorithm: In the PSO algorithm, each particle is
associated with a position in the search space and velo-
city for its trajectory. For defining this, let us assume that
the search space is D-dimensional; then the ith individual
(particle) of the population (swarm) can be represented
by a D-dimensional vector, Xi = (xi1, xi2,…, xiD)T. The
velocity (position change) of this particle can be repre-
sented by another D-dimensional vector, Vi = (vi1,
vi2, …, viD)T. The best previously visited position of the ith
particle is denoted as Pi = (pi1, pi2, …, piD)T. Defining g
as the index of the best particle in the swarm (i.e. the gth
particle is the best), and superscripts denoting the itera-
tion number, the swarm is manipulated according to the
following two equations19:

Velocity updating:

 1
1 1[rand () ()n n n n

id id id idv w v c p xχ+ = + −
 2 2rand ()()].n n

gd idc p x+ − (1)

Position updating:

 1 1,n n n
id id idx x v+ += + (2)

where d = 1, 2, …, D is the index for decision variables;
i = 1, 2, 3, …, N, the index for the swarm population; N
the size of the swarm; χ a constriction coefficient; w the
inertial weight; the symbol g represents the index of the
best particle among all particles in the population; c1 and
c2 are called acceleration coefficients (namely cognitive
and social parameters); ‘rand1()’ and ‘rand2()’ are uni-
form random numbers between zero and 1, and n is the
iteration number. In eq. (1), the first term is the momen-
tum part, the second term is the cognitive component
(personal knowledge), and the third term is the social
component (group knowledge). The general effect of the
equation is that each particle oscillates in the search
space, between its previous best position and the best posi-
tion of its best neighbour, attempting to find the new best
point in its trajectory. A time-step of unity is assumed in
the velocity term of eq. (2).
 In the PSO algorithm, first each particle is initialized
with a random swarm of particles and random velocity
vectors. Then the fitness of each particle is evaluated by
the fitness function. Two ‘best’ values are defined, the
global and the personal best. The global best (GBest) is
the highest fitness value in the entire population (best
solution so far), and the personal best (PBest) is the high-
est fitness value achieved by a specific particle over the
iterations. Each particle is attracted towards the location
of the ‘best fitness achieved so far’ across the whole
population. In order to achieve this, a particle stores the
previously reached ‘best’ positions in a cognitive mem-
ory. The relative ‘pull’ of the global and the personal best
is determined by the acceleration constants c1 and c2. After
this update, each particle is then revaluated. If any fitness is
greater than the global best, then the new position becomes
the new global best. If the particle’s fitness value is greater
than the personal best, then the current value becomes the
new personal best. This procedure is repeated till the termi-
nation criteria are satisfied. The pseudo-code of the PSO
algorithm19 is presented in Figure 4.

Begin
 Initialize swarm position X(0) and velocities V(0)
 Set iteration counter, n = 0
 Repeat
 Compute fitness function for each individual of swarm
 Compute PBest(n) and GBest
 Begin (Perform PSO operations)
 Compute V(n + 1) using velocity update rule
 Compute X(n + 1) using position update rule
 End
 Set n = n + 1
 Until termination criteria satisfied
End

Figure 4. Pseudo-code of the particle swarm optimization (PSO)
algorithm.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 376

Figure 5. Illustration of the working of the PSO algorithm, showing over the iterations how the parti-
cles explore the global optima. The colour scheme gives the quality of fitness value (objective value).
Blue colour corresponds to minimum f, whereas dark red to maximum f.

 For illustration of the PSO working principle, let us
consider a simple function

2 2()(,) e x yf x y x − −= for maxi-
mization. The working of the PSO at various iterations is
depicted in Figure 5. Let (a) at iteration = 0, ten particles
are randomly initialized uniformly in their search space;
(b) at iteration = 10, the particles are guided by the social
and individual experiences gained over the few iterations
and are exploring the better functional value; (c) at itera-
tion = 20, the particles are moving towards better fitness
value and nearing the optimal value; (d) at iteration = 30,
almost all the particles have reached the best solution in
the search space. The darkness of colour from blue to red
shows the variation of objective function value from
minimum to maximum.
 The solution of real-world problems is often difficult
and time-consuming. Thus the application of bio-inspired
algorithms in combination with the conventional optimi-
zation methods has also been receiving attention, with
wider applications to practical problems1.

Bee-inspired optimization

These optimization algorithms are inspired by honey
bees. There are two main classes of honey-bee optimiza-
tion algorithms: algorithms that utilize genetic and beha-
vioural mechanisms underlying the mating behaviour of
the bee, and algorithms that take their inspiration from

the foraging behaviour of the bee. The first class of opti-
mization algorithms makes use of the fact that a honey-
bee colony comprises a large number of individuals that
are genetically heterogeneous due to the queen mating
with multiple males. Many of the mating-inspired algo-
rithms extend the principles of optimization algorithms
from the field of evolutionary computation by introducing
bee-inspired operators for mutation or crossover.
 Among the bee swarm algorithms for optimization, the
HBMO algorithm that was inspired from the natural mat-
ing process of honey bees20, and the ABC algorithm that
was inspired from simulating foraging behaviour of
bees21 are receiving wider applications in different areas
of science and engineering for solving various optimiza-
tion problems such as optimization of continuous func-
tions, data-mining, vehicle routing, image analysis,
protein structure prediction, etc.

ABC algorithm: This is a population-based algorithm
inspired by the foraging behaviour of honey-bees21. In
this metaphor, bees are the possible solutions to the pro-
blem, and they fly within the environment (the search
space) to find the best food source location (best solu-
tion).
 Honey-bee colonies have a decentralized system to col-
lect food and can adjust the searching pattern precisely
in order to enhance the collection of nectar. Honey bees
collect nectar from flower patches as a food source for

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 377

the hive from vast areas around their hive (more than
10 km), and usually the number of bees going out is pro-
portional to the amount of food available at each patch.
Bees communicate with each other at the hive via a waggle
dance that informs other bees in the hive as to the
direction, distance and quality rating of food sources. The
exchange of information among bees is most important in
the formation of the collective knowledge.
 The basic idea concerning the algorithms based on the
bee foraging behaviour is that foraging bees have a
potential solution to an optimization problem in their
memory (i.e. a configuration for the problem decision
variables). This potential solution corresponds to the
location of a food source and has an aggregated quality
measure (i.e. value of the objective function). The food
source quality information is exchanged through the
waggle dance that probabilistically biases other bees to
exploit food sources with higher quality.
 The ABC algorithm works with a swarm of n solutions
and x (food sources) of dimension d that are modified by
the artificial bees. The bees aim at discovering places of
food sources v (locations in the search space) with high
amount of nectar (good fitness). In the ABC algorithm
there are three types of bees: the scout bees that fly
randomly in the search space without guidance; the
employed bees that exploit the neighbourhood of their
food sources selecting a random solution to be perturbed
and the onlooker bees that are placed on the food sources
using a probability based selection process. As the nectar
amount of a food source increases, the probability value
Pi with which the food source is preferred by onlookers
also increases. If the nectar amount of a new source is
higher than that of the previous one in their memory, they

update the new position and forget the previous one. If a
solution is not improved by a predetermined number of
trials controlled by the parameter limit, then the food
source is abandoned by the corresponding employed bee,
and it becomes a scout bee. Each cycle of the search con-
sists of moving the employed and onlooker bees onto the
food sources and calculating their nectar amounts, and
determining the scout bees and directing them onto pos-
sible food sources. The ABC algorithm seeks to balance
the exploration and exploitation by combining local
search methods (accomplished by employed and onlooker
bees), with global search methods (dealt by scout bees)21.
The pseudo-code of the ABC algorithm is shown in
Figure 6.
 A brief comparison of different evolutionary computa-
tion algorithms and SI algorithms is given in Table 1.
Detailed reviews of different EAs and their applications
can be found in the literature22–25.

Multi-objective optimization

Recently, bio-inspired algorithms are becoming increas-
ingly popular for solving multi-objective optimization
problems, and ensued in the development of various
multi-objective evolutionary algorithms (MOEAs) and
multi-objective swarm algorithms (MOSAs). This is due
to their efficiency and easiness to handle nonlinear and
nonconvex relationships of real-world problems1. Also,
these algorithms have some advantages over the conven-
tional approaches, such as, use of population of solutions
in each iteration helps to offer a set of alternatives in a
single run, and randomized initialization and stochastic

Begin
 Initialize the food positions randomly xi, i = 1, 2, …, n
 Evaluate fitness f(xi) of the individuals
 While stop condition not met Do
 Employed phase:
 Produce new solutions with k, j and φ at random
 ϕ= + ⋅ −(),ij ij ij ij kjv x x x ϕ∈ ∈ ∈{1, 2,..., }, {1, 2,..., }, [0,1]k n j d
 Evaluate solutions
 Apply greedy selection process for the employed bees
 Onlooker phase:
 Calculate probability values for the solutions xi

=

=
∑ 1

n
j

i
i

j

fP
f

 Produce new solutions from xi selected using probability Pi
 Evaluate solutions
 Apply greedy selection for the onlookers
 Scout phase:
 Find abandoned solution: If limit exceeds, replace it with a new random solution
 Memorize the best solution achieved so far
 End While
 Output the results
End

Figure 6. Pseudo-code of the artificial bee colony algorithm.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 378

Table 1. Characteristics of different evolutionary computation and swarm intelligence (SI) algorithms

Characteristic Genetic Differential Genetic Ant colony Particle swarm Artificial bee
of algorithm algorithm evolution programming optimization optimization colony algorithm

Algorithm type Genotypic/ Phenotypic Phenotypic Phenotypic Phenotypic Phenotypic
 phenotypic

Developed by Holland3 Storn and Price10 Koza8 Dorigo et al.14 Eberhart Karaboga21
 and Kennedy15

Basic principle Natural selection Survival of the Survival of the Cooperative group Cooperative group Collective
 or survival of fittest fittest intelligence of intelligence of knowledge
 the fittest swarm swarm of bees

Solution Binary/real- Real-valued Expression Graph or a similar Real-valued Real-valued
 representation valued trees structure for
 path-covering
 of ants

Fitness Scaled objective Objective Scaled Scaled Objective Objective
 value function value objective value objective value function value function value

Evolutionary Mainly crossover Mainly mutation Crossover and None None None
 operators (other operator, (other operator, mutation
 mutation) crossover)

Selection Probabilistic, Deterministic, Probabilistic, Probabilistic, Deterministic, Probabilistic,
 process preservative extinctive extinctive preservative extinctive preservative

Type of Applicable to Mainly for real Mainly for Mainly for Mainly for real Applicable to
 decision both real values values (can be real values discrete values values (applicable both discrete
 variables and/or discrete used for discrete for discrete and real values
 values variables) variables)

Applicability For all types of For all types of For all types of For all types of For all types of For all types of
 to problems problems problems problems problems problems problems
 (linear/ (linear/ (linear/ (linear/ (linear/ (linear/
 nonlinear) nonlinear) nonlinear) nonlinear) nonlinear) nonlinear)

search in their operation helps to overcome local optima.
These special characteristics are helping the bio-inspired
algorithms to achieve well-spread and well-diverse pareto
optimal solutions in a single run quickly. Hence they are
receiving wider applications in different areas ranging
from robotics to water resources using MOEAs1,26–28 and
MOSAs18,29–31.

Artificial neural networks

Artificial neural network (ANN) is another important
computational method that was developed in the 1970s
and 1980s, and is gaining popularity as a modern statisti-
cal data-modelling tool for many nonlinear, difficult-to-
represent and complex problems in science and engineer-
ing. The ANNs are inspired from a close examination of
the central nervous system and the neurons, axons, den-
drites and synapses, which constitute the processing
elements of biological neural networks as investigated by
neuroscience experts32. In the ANN, simple artificial

nodes (called neurons) are connected together to form a
network of nodes mimicking the biological neural net-
works. A neural network consists of an interconnected
group of artificial neurons, and it processes information
using a connectionist approach to computation. The
neural models are usually used to model complex rela-
tionships between inputs and outputs (called function
approximation), or to find patterns in data (called pattern
recognition)33.
 In general, the ANN is an adaptive system that changes
its structure based on external or internal information that
flows through the network during the learning phase. To
achieve robust learning from the given set of patterns,
various kinds of neural network mechanisms are
explored. These include feed-forward neural networks
(FFNNs), recurrent neural networks, time-delayed neural
networks, real-time recurrent neural networks, etc. A
standard architecture of the FFNN is shown in Figure 7.
 Network architecture mainly denotes the number of
input and output variables, the number of hidden layers,
and the number of neurons in each hidden layer. It

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 379

Figure 7. Architecture of artificial neural network. a, Artificial neuron; b, Multilayered feed-forward neural network.

determines the number of connection weights and the
way information flows through the network. The sole role
of the nodes of the input layer is to relay the external
inputs to the neurons of the hidden layer. Hence the num-
ber of input nodes corresponds to the number of input
variables. The outputs of the last hidden layer are passed
to the output layer which provides the final output of the
network.
 Depending on the procedure through which ANNs
establish the given task of function of approximation or
pattern recognition, there are mainly two classes of net-
work training known as supervized and unsupervized
learning. In supervized training, in order to learn the rela-
tionships, inputs and outputs are specified for each pat-
tern during the training period (e.g. FFNN); whereas in
unsupervized training only inputs are specified to the
neural networks and it should be able to evolve itself to
achieve a specific task such as pattern recognition or
classification (e.g. self-organizing maps). There are many
methods to find optimal weights of neural networks33,
such as error back-propagation algorithm, conjugate gra-
dient algorithm, cascade correlation algorithm, quasi-
Newton method, Levenberg–Marquardt algorithm, radial
basis function algorithm, etc. Apart from this, EAs have
also been proposed for finding the network architecture
and weights of neural networks, and have been applied to
various problems34,35.
 ANNs are receiving increasing attention with wider
applications for modelling complex and dynamic systems
in science and engineering. Since any modelling effort
will have to be based on an understanding of the variabil-
ity of the past data, ANNs have some special useful char-
acteristics in this regard. In contrast to conventional
modelling approaches, ANNs do not require an in-depth
knowledge of the driving processes, nor do they require
the form of the model to be specified a priori25. Over the
last two decades, ANNs have been used extensively to
model complex nonlinear dynamics, which is not ade-
quately represented by linear models33,35. As the cited
papers also include discussion on various applications,
the interested reader may refer them for more details on
specific applications.

Concluding remarks

Researchers have developed various algorithms for solv-
ing complex problems by modelling the behaviours of
nature and biological processes, which resulted in several
evolutionary computation and SI algorithms. EAs are
inspired from Darwin’s principle of evolution – ‘survival
of the fittest’. SI algorithms are inspired from biological
activities such as food searching by the ants, bird flock-
ing, fish schooling, honey-bee mating process, etc. Algo-
rithms such as GA based on the theory of survival of the
fittest, ACO based on ant swarm, PSO based on bird
flock and fish schooling, and HBMO based on honey-bee
mating have been proposed in various studies to solve
optimization problems in science and engineering. These
computational algorithms can provide acceptable optimal
solutions to many complex problems that are difficult to
cope using conventional methods (due to their nature that
may imply discontinuities of the search space, non-
differentiable objective functions, nonlinear relationships
or imprecise arguments and function values). Thus the
use of these computational algorithms for solving practi-
cal problems is becoming more popular. Still there is a lot
of scope for research and their applications in different
areas of science, engineering and industrial problems. By
considering the specific advantages of the EA and SI
algorithms, it will be a wise idea to take benefit of the
special advantages of these methods in solving practical
problems.

1. Deb, K., Multi-objective Optimization using Evolutionary Algo-
rithms, John Wiley, Chichester, UK, 2001.

2. Janga Reddy, M., Swarm intelligence and evolutionary computa-
tion for single and multiobjective optimization in water resource
systems. Ph D thesis, Indian Institute of Science, Bangalore,
2006.

3. Holland, J. H., Adaptation in Natural and Artificial Systems, The
MIT Press, 1975.

4. Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press, New
York, 1999.

5. Michalewicz, Z. and Fogel, D. B., How to Solve It: Modern
Heuristics, Springer, 2004.

6. Brownlee, J., Clever Algorithms: Nature-inspired Programming
Recipes, LuLu.com, Australia, 2011, ISBN: 978-1-4467-8506-5.

GENERAL ARTICLES

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 380

7. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison Wiley, Reading, NY, 1989.

8. Koza, J. R., Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection, The MIT Press, Cambridge,
MA, 1992.

9. Ferreira, C., Gene expression programming: a new adaptive algo-
rithm for solving problems. Complex Syst., 2001, 13, 87–129.

10. Storn, R. and Price, K., Differential evolution – a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. Technical Report, TR-95-012, International Computer Sci-
ence Institute, Berkley, 1995.

11. Price, V. K., Storn, R. M. and Lampinen, J. A., Differential Evolu-
tion: A Practical Approach to Global Optimization, Springer-
Verlag, Berlin, 2005.

12. Seeley, T., Honeybee Ecology: A Study of Adaptation in Social
Life, Princeton University Press, Princeton, 1985.

13. Millonas, M. M., Swarms, phase transitions, and collective intelli-
gence. In Artificial Life III, Addison-Wesley, Reading, 1994,
pp. 417–445.

14. Dorigo, M., Maniezzo, V. and Colorni, A., Positive feedback as a
search strategy. Technical Report 91-016, Politecnico di Milano,
Italy, 1991.

15. Eberhart, R. C. and Kennedy, J., A new optimizer using particle
swarm theory. In Proceedings Sixth Symposium on Micro
Machine and Human Science, IEEE Service Center, Piscataway,
NJ, 1995, pp. 39–43.

16. Dorigo, M. and Stutzle, T., Ant Colony Optimization, MIT Press,
Cambridge, MA, 2004.

17. Nagesh Kumar, D. and Janga Reddy, M., Ant colony optimization
for multipurpose reservoir operation. Water Resour. Manage.,
2006, 20, 879–898.

18. Kennedy, J., Eberhart, R. C. and Shi, Y., Swarm Intelligence,
Morgan Kaufmann, San Francisco, 2001.

19. Nagesh Kumar, D. and Janga Reddy, M., Multipurpose reservoir
operation using particle swarm optimization. J. Water Resour.
Plan. Manage., ASCE, 2007, 133, 1–10.

20. Abbass, H. A., Marriage in honey bees optimization: a haplomet-
rosis polygynous swarming approach. In The Congress on Evolu-
tionary Computation, CEC2001, Seoul, Korea, 2001, vol. 1, pp.
207–214.

21. Karaboga, D., An idea based on honey bee swarm for numerical
optimization. Technical Report-TR06, Erciyes University, Turkey,
2005.

22. Labadie, J. W., Optimal operation of multireservoir systems: state-
of-the-art review. J. Water Resour. Plan. Manage., ASCE, 2004,
130, 93–111.

23. Rani, D. and Moreira, M. M., Simulation–optimization modelling:
a survey and potential application in reservoir systems operation.
Water Resour. Manage., 2010, 24, 1107–1138.

24. Nicklow, J. et al., State of the art for genetic algorithms and
beyond in water resources planning and management. J. Water
Resour. Plan. Manage., ASCE, 2011, 136, 412–432.

25. Karaboga, D. and Akay, B., A survey: algorithms simulating bee
swarm intelligence. Artif. Intell. Rev., 2009, 31, 61–85.

26. Janga Reddy, M. and Nagesh Kumar, D., Optimal reservoir opera-
tion using multi objective evolutionary algorithm. Water Resour.
Manage., 2006, 20, 861–878.

27. Janga Reddy, M. and Nagesh Kumar, D., Multi-objective differen-
tial evolution with application to reservoir system optimization.
J. Comp. Civ. Eng., ASCE, 2007, 21, 136–146.

28. Janga Reddy, M. and Nagesh Kumar, D., Evolving strategies for crop
planning and operation of irrigation reservoir system using multi-
objective differential evolution. Irrig. Sci., 2008, 26, 177–190.

29. Janga Reddy, M. and Nagesh Kumar, D., Multi-objective particle
swarm optimization for generating optimal trade-offs in reservoir
operation. Hydrol. Proc., 2007, 2, 2897–2909.

30. Janga Reddy, M. and Nagesh Kumar, D., An efficient multi-
objective optimization algorithm based on swarm intelligence for
engineering design. Eng. Opt., 2007, 39, 49–68.

31. Janga Reddy, M. and Nagesh Kumar, D., Performance evaluation
of elitist-mutated multi-objective particle swarm optimization for
integrated water resources management. J. Hydroinf., 2009, 11,
78–88.

32. Hertz, J., Palmer, R. G. and Krogh, A. S., Introduction to the
Theory of Neural Computation, Perseus Books, 1990.

33. Haykin, S., Neural Networks: A Comprehensive Foundation, Pren-
tice Hall, 1999.

34. Nagesh Kumar, D., Janga Reddy, M. and Maity, R., Regional rain-
fall forecasting using large scale climate teleconnections and arti-
ficial intelligence techniques. J. Intell. Syst., 2007, 16, 307–322.

35. Maier, H. R., Jain, A., Dandy, G. C. and Sudheer, K. P., Methods
used for the development of neural networks for the prediction of
water resources variables in river systems: Current status and
future directions. Environ. Model. Soft., 2010, 25, 891–909.

Received 14 December 2011; revised accepted 20 June 2012

