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In recent times computational algorithms inspired by biological processes and evolution are gain-
ing much popularity for solving science and engineering problems. These algorithms are broadly 
classified into evolutionary computation and swarm intelligence algorithms, which are derived 
based on the analogy of natural evolution and biological activities. These include genetic algo-
rithms, genetic programming, differential evolution, particle swarm optimization, ant colony opti-
mization, artificial neural networks, etc. The algorithms being random-search techniques, use some 
heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the 
global optimal solutions. The bio-inspired methods have several attractive features and advantages 
compared to conventional optimization solvers. They also facilitate the advantage of simulation and 
optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world 
problems. These biologically inspired methods have provided novel ways of problem-solving for 
practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, 
chemical, electrical, civil, water resources and others fields. This article discusses the key features 
and development of bio-inspired computational algorithms, and their scope for application in sci-
ence and engineering fields. 
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IN the last few decades, several novel computational 
methods have been proposed for the solution of complex 
real-world problems. The development of various bio-
logically inspired computational algorithms has been rec-
ognized as one of the important advances made in the 
field of science and engineering. These algorithms can 
provide an enhanced basis for problem-solving and deci-
sion-making. 
 It is well recognized that the complexity of today’s 
real-world problems exceeds the capability of conven-
tional approaches1. The popular conventional methods 
that have been widely used include mathematical optimi-
zation algorithms (such as Newton’s method and gradient 
descent method that use derivatives to locate a local 
minimum), direct search methods (such as the simplex 
method and the Nelder–Mead method that use a search 
pattern to locate optima), enumerative approaches such as 
dynamic programming (DP), etc. Each of these tech-
niques in general requires making several assumptions 

about the problem in order to suit a particular method, 
and may not be flexible enough to adapt the algorithm to 
solve a particular problem as it is, and may obstruct the 
possibility of modelling the problem closer to reality2. 
Many science and engineering problems generally  
involve nonlinear relationships in their representation; so 
linear programming (LP) may not be a suitable approach 
to solve most of the complex practical problems. The 
enumerative-based DP technique poses ‘curse-of-
dimensionality’ for a higher dimensional problem, due to 
exponential increase in computational time with increase 
in the number of state variables and the corresponding 
discrete states. The gradient-based nonlinear program-
ming methods can solve problems with smooth nonlinear 
objectives and constraints. However, in large and highly 
nonlinear environment, these algorithms often fail to find 
feasible solutions, or converging to suboptimal solutions 
depending upon the degree of nonlinearity and initial 
guess. Also, the conventional nonlinear optimization 
solvers are not applicable for problems with non-
differentiable and/or discontinuous functional relation-
ships. The efficiency of algorithms varies depending  
on the complexity of the problem. Thus, for one reason or 
the other, conventional methods have several limitations 
and may not be suitable for a broad range of practical 
problems. 



GENERAL ARTICLES 
 

CURRENT SCIENCE, VOL. 103, NO. 4, 25 AUGUST 2012 371

 To surmount these problems, in recent times stochastic 
search and optimization algorithms inspired by nature and 
biological processes have been proposed and applied in 
various fields of science and engineering. In the follow-
ing section details of these methods are briefly discussed. 

Algorithms inspired by biological processes 

The ideas from nature and biological activities have moti-
vated the development of many sophisticated algorithms 
for problem-solving. These algorithms are broadly classi-
fied as evolutionary computation and swarm intelligence 
(SI) algorithms. Evolutionary computation is a term used 
to describe algorithms which were inspired by ‘survival of 
the fittest’ or ‘natural selection’ principles3; whereas 
‘swarm intelligence’ is a term used to describe the algo-
rithms and distributed problems-solvers which were  
inspired by the cooperative group intelligence of swarm 
or collective behaviour of insect colonies and other ani-
mal societies4. 

Evolutionary algorithms 

Evolutionary algorithms (EAs) are computational meth-
ods inspired by the process and mechanisms of biological 
evolution. According to Darwin’s natural selection theory 
of evolution, in nature the competition among individuals 
for scarce resources results in the fittest individuals 
dominating over the weaker ones (i.e. survival of the  
fittest). The process of evolution by means of natural  
selection helps to account for the variety of life and its 
suitability for the environment. The mechanisms of evo-
lution describe how evolution actually takes place 
through the modification and propagation of genetic  
material (proteins). EAs share properties of adaptation 
through an iterative process that accumulates and ampli-
fies beneficial variation through a trial and error process. 
Candidate solutions represent members of a virtual popu-
lation striving to survive in an environment defined by  
a problem-specific objective function. In each case, the 
evolutionary process refines the adaptive fit of the popu-
lation of candidate solutions in the environment, typically 
using surrogates for the mechanisms of evolution such as 
genetic recombination and mutation3. 
 In EAs, a population of individuals, each representing 
a search point in the space of feasible solutions, is ex-
posed to a collective learning process which proceeds 
from generation to generation. The population is ran-
domly initialized and subjected to the process of selec-
tion, recombination and mutation through stages known 
as generations, such that the newly created generations 
evolve towards more favourable regions of the search 
space. The progress in the search is achieved by evaluat-
ing the fitness of all the individuals in the population,  
selecting the individuals with the highest fitness value 

and combining them to create new individuals with  
increased likelihood of improved fitness. After some  
generations, the solution converges and the best individ-
ual represents optimum (or near-optimum solution). The 
standard structure of EA5 is shown in Figure 1. 
 EAs provide solutions to many real-world, complex, 
optimization problems that are difficult to tackle using 
the conventional methods, due to their nature that implies 
discontinuities of the search space, non-differentiable  
objective functions, imprecise arguments and function 
values2. EAs can be applied to many types of problems, 
viz. continuous, mixed-integer, combinatoric, etc. Fur-
thermore, these algorithms can be easily combined with 
the existing techniques such as local search and other  
exact methods. In addition, it is often straightforward to 
incorporate domain knowledge in the evolutionary opera-
tors and in the seeding of the population. Moreover, EAs 
can handle problems with any combination of the chal-
lenges that may be encountered in real-world application 
such as local optima, multiple objectives, constraints,  
dynamic components, etc. The main paradigms of nature-
inspired evolutionary computation5 include genetic  
algorithm (GA), genetic programming (GP), evolutionary 
programming (EP), evolutionary strategies (ES), differen-
tial evolution (DE), etc. 

Genetic algorithms 

The most well-known paradigm of EAs is GA, having 
widespread popularity in science, engineering and indus-
trial applications. The GA is inspired by population  
genetics (including heredity and gene frequencies) and 
evolution at the population level as well as Mendelian 
understanding of the structure (such as chromosomes, 
genes, alleles) and mechanisms (such as recombination 
and mutation)6. Individuals of a population contribute 
their genetic material (genotype) proportional to the suit-
ability of their expressed genome (phenotype) to the envi-
ronment, in the form of offspring. The next generation is 
created through a process of mating that involves the  
recombination of genomes of two individuals in the 
population with the introduction of random perturbation 
 
 
 Begin 
  t ← 0 
  initialize population P(t) 
  evaluate P(t) 
  While (not termination-condition) do 
  Begin 
   t ← t + 1 
   select P(t) from P(t – 1) 
   alter P(t) 
   evaluate P(t) 
  End 
 End 

 
Figure 1. Basic structure of an evolutionary algorithm. 
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(called mutation). This iterative process may result in an 
improved adaptive fit between the phenotypes of indi-
viduals in a population and the environment. 
 The basic version of GA was developed by Holland3 
based on binary encoding of the solution parameters 
(called binary-coded GA). Later many variants of GA 
were developed, including real-coded GAs, which work 
directly with the real values of the parameters7. The main 
steps involved in GA are: 
 
(1) Initialize population using random generation. 
(2) Evaluate the fitness of each individual in the popula-

tion. 
(3) Repeat the following steps (for evolution) until the 

termination criteria are satisfied: 
  (a) Select the best-fit individuals for reproduction. 
  (b) Perform genetic operations, crossover and  

  mutation to generate new offspring. 
 (c) Evaluate the individual fitness of new members. 
 (d) Replace the least fit individuals with new  

  individuals. 
(4) Report the best solution of the fittest individual. 
 
The algorithm can be terminated when the fitness value 
has reached some predefined threshold or maximum  
allowed time has elapsed or maximum number of genera-
tions is passed. The GA can be applied in many different 
ways to solve a wide range of problems. The success of 
GA to solve a specific problem depends on two major  
decisions: proper representation of the problem and  
defining a good measure of fitness. GAs have successful 
applications in civil, mechanical, electrical, manufactur-
ing, economics, physics, chemistry, bioinformatics, water 
resources, etc.1,5,7. 

Genetic programming 

GP is an inductive automatic programming technique for 
evolving computer programs to solve problems8. The  
objective of the GP algorithm is to use induction to  
devise a computer program. This is achieved by using 
evolutionary operators on candidate programs with a tree 
structure to improve the adaptive fit between the popula-
tion of candidate programs and an objective function. The 
GP is well suited to symbolic regression, controller  
design and machine-learning tasks under the broader 
name of function approximation. 
 In GP, a population is progressively improved by  
selectively discarding the not-so-fit population and breed-
ing new children from better populations. Like other EAs, 
the GP solution starts with a random population of indi-
viduals (equations or computer programs). Each possible 
solution set can be visualized as a ‘parse tree’ comprising 
the terminal set (input variables) and functions (generally 
operators such as +, –, *, /, logarithmic or trigonometric). 

The ‘fitness’ is a measure of how closely a trial solution 
solves the problem. The objective function, say, the 
minimization of error between estimated and observed 
value, is the fitness function. The solution set in a popula-
tion associated with the ‘best fit’ individuals will be  
reproduced more often than the less-fit solution sets. The 
subsequent generation of new population is achieved 
through different genetic operations like reproduction, 
crossover and mutation. Selection is generally made by 
ranking the individuals according to their fitness. Indi-
viduals with better fitness are carried over to the next 
generation. In crossover operation, the branches in the 
‘parse tree’ of two parent individuals are interchanged to 
generate two possible solution sets. The new solution sets 
(children) depict some characteristics of their parents, 
and genetic information is exchanged in the process; 
whereas mutation operation simply consists of random 
perturbation of node (function) in a tree with a probabi-
lity known as mutation probability. Mutation of a parse 
tree will not change the tree structure, but changes the  
information content in the parse tree. The mutation helps 
to explore new domains of search and avoids the chances 
of local trapping. The overall success of GP in solving a 
given problem depends on proper selection and fine-
tuning of the operators and parameters. 
 There are several variants of GP, like linear genetic 
programming (LGP), gene expression programming 
(GEP), multi-expression programming (MEP), Cartesian 
genetic programming, etc. Among these, the LGP and 
GEP are widely used in various fields of science and  
engineering8,9. 

Differential evolution 

DE is a modern optimization technique in the family of 
EAs introduced by Storn and Price10. It was proposed as a 
variant of EAs to achieve the goals of robustness in opti-
mization and faster convergence to a given problem. DE 
algorithm differs from other EAs in the mutation and  
recombination phases. Unlike GAs, where perturbation 
occurs in accordance with a random quantity, DE uses 
weighted differences between solution vectors to perturb 
the population. 
 A typical DE works as follows: after random initializa-
tion of the population (where the members are randomly 
generated to cover the entire search space uniformly), the 
objective functions are evaluated and the following steps 
are repeated until a termination condition is satisfied. At 
each generation, two operators, namely mutation and 
crossover are applied on each individual to produce a new 
population. In DE, mutation is the main operator, where 
each individual is updated using a weighted difference of 
a number of selected parent solutions; and crossover acts 
as background operator where crossover is performed on 
each of the decision variables with small probability. The 
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offspring replaces the parent only if it improves the fit-
ness value; otherwise the parent is carried over to the new 
population. 
 There are several variants of DE, depending on the 
number of weighted differences considered between solu-
tion vectors for perturbation and the type of crossover 
operator (binary or exponential). For example, in DE/ 
rand-to-best/1/bin variant of DE, perturbation is made 
with the vector difference of the best vector of the previ-
ous generation (best) and current solution vector, plus 
single vector differences of two randomly chosen vectors 
(rand) among the population. The DE variant uses bino-
mial (bin) variant of crossover operator, where the cross-
over is performed on each of the decision variables 
whenever a randomly picked number between 0 and 1 is 
within the crossover constant (CR) value. More details of 
DE and their applications can be found in Price et al.11. 

Swarm intelligence 

The term swarm is used for the assembling of animals 
such as fish schools, bird flocks and insect colonies (such 
as ants, termites and honey bees) performing collective 
activities. In the 1980s, ethologists conducted several 
studies and modelled the behaviour of a swarm and came 
up with some interesting observations12. The individual 
agents of a swarm act without supervision, and each of 
these agents has a stochastic behaviour due to its percep-
tion in the neighbourhood. Simple local rules, without 
any relation to the global pattern, and interactions  
between systematic or self-organized agents led to the 
emergence of collective intelligence called ‘swarm intel-
ligence’ (SI). Swarms use their environment and  
resources effectively by collective intelligence. Self-
organization is the key characteristic of a swarm system, 
which results in global-level response by means of local-
level interactions4. 
 The SI algorithms are based on intelligent human cog-
nition that derives from the interaction of individuals in a 
social environment. In the early 1990s, researchers no-
ticed that the main idea of socio-cognition can be effec-
tively applied to develop stable and efficient algorithms 
for optimization tasks2. In a broad sense, SI is an artificial 
intelligence tool that focuses on studying the collective 
behaviour of a decentralized system made up of a popula-
tion of simple agents interacting locally with each other 
and with the environment. The SI methods are also called 
behaviourally inspired algorithms. 
 The main principles to be satisfied by a swarm algo-
rithm to have an intelligent behaviour are13: 
 
• The swarm should be able to do simple space and time 

computations (the proximity principle). 
• The swarm should be able to respond to quality fac-

tors in the environment, such as the quality of food or 
safety of location (the quality principle). 

• The swarm should not allocate all of its resources 
along excessively narrow channels and it should dis-
tribute resources into many nodes (the principle of  
diverse response). 

• The swarm should not change its mode of behaviour 
upon every fluctuation of the environment (the princi-
ple of stability). 

• The swarm must be able to change behaviour mode 
when it matters (the principle of adaptability). 

 
The main paradigms of biologically inspired SI algo-
rithms include ant colony optimization (ACO), particle 
swarm optimization (PSO), artificial bee colony (ABC), 
honey-bee mating optimization (HBMO) algorithms, etc. 
The SI algorithms have many features in common with 
the EAs. Similar to EAs, SI models are population-based 
methods. The system is initialized with a population of 
individuals (i.e. potential solutions). These individuals 
are then manipulated over many generations by way of 
mimicking the social behaviour of insects or animals, in 
an effort to find the optima. Unlike EA, SI models do not 
use evolutionary operators such as crossover and muta-
tion. A potential solution simply flies through the search 
space by modifying itself according to its relationship 
with other individuals in the population and the environ-
ment. In the 1990s, mainly two approaches: (i) based on 
ant colony described by Dorigo14, and (ii) based on fish 
schooling and bird flocking introduced by Eberhart and 
Kennedy 15 had vastly attracted the interest of researchers. 
Both approaches have been studied by many researchers 
and their new variants have been introduced and applied 
for solving several problems in different areas. Brief  
descriptions of ACO, PSO and ABC algorithms with their 
basic working principles are presented next. 

Ant colony optimization 

The ACO is inspired by the foraging search behaviour of 
real ants and their ability in finding the shortest paths. It 
is a population-based general search technique for the  
solution of difficult combinatorial optimization problems. 
The first ant system algorithm was proposed based on the 
foraging behaviour exhibited by real ant colonies in their 
search for food14. The algorithm is stimulated by the 
pheromone trail-laying and training behaviour of real ant 
colonies. The process by which the ants are able to find 
the shortest paths2 is illustrated in Figure 2. 
 Let H be home, F be the food source and A–B be an 
obstacle in the route. At various times, the movement of 
ants can be described as follows: (a) at time t = 0, the ants 
choose left and right-side paths uniformly in their search 
for food source; (b) at time t = 1, the ants which have 
chosen the path F–B–H reach the food source earlier and 
are retuning back to their home, whereas ants which have 
chosen path H–A–F are still halfway in their journey to
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Figure 2. Illustration of ant colony principle – how real ants find the shortest path in their search for food. 
 
 
the food source; (c) at time t = 2, since the ants move at 
approximately constant speed, those which chose the 
shorter, right-side path (H–B–F) reach home more  
rapidly, depositing more pheromone in the H–B–F route; 
(d) at time t = 3, pheromone accumulates at a higher rate 
on the shorter path (H–B–F), which is therefore automati-
cally preferred by the ants and consequently all ants will 
follow the shortest path. The darkness of the shading is 
approximately proportional to the amount of pheromone 
deposited by ants. 
 In general, ACO has many features, which are similar 
to GA16,17: 
• Both are population-based stochastic search tech-

niques. 
• GA works on the principle of natural evolution or sur-

vival of the fittest, whereas ACO works on phero-
mone trail-laying behaviour of ant colonies. 

• GA uses crossover and mutation as prime operators in 
its evolution for the next generation, whereas ACO 
uses pheromone trail and heuristic information. 

• In ACO, trial solutions are constructed incrementally 
based on the information contained in the environ-
ment and the solutions are improved by modifying the 
environment through a form of indirect communica-
tion called stigmergy; on the other hand, in GA the 
trial solutions are in the form of strings of genetic  
materials and new solutions are obtained through the 
modification of previous solutions. 

• In GA, the memory of the system is embedded in the 
trial solutions, whereas in ACO algorithms the system 
memory is contained in the environment itself. 

 
ACO algorithm: The ant system is the first ACO algo-
rithm14 that was proposed in 1991. The algorithm 
searches for global optimum using a population of trial 
solutions. First the system is randomly initialized with a 
population of individuals (each representing a particular 

decision point). These individuals are then manipulated 
over many iterations using some guiding principles in 
their search, in an effort to find the optima. The guiding 
principle used within the ACO is a probability function 
based on the relative weighting of pheromone intensity 
and heuristic information (indicating the desirability of 
the option) at a decision point. At the end of each itera-
tion, each of the ants adds pheromone to its path (set of 
selected options). The amount of pheromone added is 
proportional to the quality of the solution (for example, in 
the case of minimization problems, lower-cost solutions are 
better; hence they receive more pheromone). The pseudo-
code of a simple ACO algorithm17 is given in Figure 3. 
 In early stages, these were mainly used for discrete 
combinatorial optimization tasks, but later modified and 
used for continuous optimization also. Thus, ACO is exhi-
biting interesting results for numerical problems as well 
as for real-life applications in science and engineering16. 
An important characteristic one should be aware of about 
ACO is that it is a problem-dependent application17. In 
 
 

Begin 
 Initialize population 
 Evaluate fitness of population 
 While (stopping criterion not satisfied) do  
  Position each ant in a starting node 
  Repeat 
   For each ant do 
    Choose next node by applying the state transition rule 
    Apply step by step pheromone update 
   End for 
  Until every ant has built a solution 
  Evaluate fitness of population 
  Update best solution 
  Apply offline pheromone update 
 End While 
End 

 
Figure 3. Pseudo-code of the ant colony optimization algorithm. 
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order to adopt ACO and apply it to a particular problem, 
the following steps are required: 
 
• Problem representation as a graph or a similar struc-

ture easily covered by ants. 
• Assigning a heuristic preference to the generated solu-

tions at each time step. 
• Defining a fitness function to be optimized. 
• Selection of appropriate model and parameters for the 

ACO algorithm. 

Particle swarm optimization 

PSO is a SI method inspired by social behaviour of bird 
flocking or fish schooling. The word ‘particle’ denotes 
individuals in a swarm, for example, birds in a flock. 
Each individual (particle) in a swarm behaves in a dis-
tributed way using its own intelligence and the collective 
(group) intelligence of the swarm. As such, if one particle 
discovers a good path to food, the rest of the swarm will 
also be able to follow the good path instantly, even if 
their location is far away in the swarm. 
 The PSO was originally proposed in 1995 by Eberhart 
and Kennedy15 as a population-based heuristic search 
technique for solving continuous optimization problems. 
The PSO shares many similarities with the GA. PSOs are 
initialized with a population of random solutions and 
searches for optima by updating generations. However, in 
contrast to methods like GA, in PSO, no operators  
inspired by natural evolution are applied to extract a new 
generation of candidate solutions; instead PSO relies on 
the exchange of information between individuals (parti-
cles) of the population (swarm). Thus, each particle  
adjusts its trajectory towards its own previous best posi-
tion and towards the best previous position attained by 
any other members in its neighbourhood (usually the  
entire swarm)18. 
 
PSO algorithm: In the PSO algorithm, each particle is 
associated with a position in the search space and velo-
city for its trajectory. For defining this, let us assume that 
the search space is D-dimensional; then the ith individual 
(particle) of the population (swarm) can be represented 
by a D-dimensional vector, Xi = (xi1, xi2,…, xiD)T. The  
velocity (position change) of this particle can be repre-
sented by another D-dimensional vector, Vi = (vi1, 
vi2, …, viD)T. The best previously visited position of the ith 
particle is denoted as Pi = (pi1, pi2, …, piD)T. Defining g 
as the index of the best particle in the swarm (i.e. the gth 
particle is the best), and superscripts denoting the itera-
tion number, the swarm is manipulated according to the 
following two equations19: 

Velocity updating: 

 1
1 1[ rand () ( )n n n n

id id id idv w v c p xχ+ = + −  
    2 2rand ()( )].n n

gd idc p x+ −  (1) 

Position updating: 
 

 1 1,n n n
id id idx x v+ += +  (2) 

 
where d = 1, 2, …, D is the index for decision variables; 
i = 1, 2, 3, …, N, the index for the swarm population; N 
the size of the swarm; χ a constriction coefficient; w the 
inertial weight; the symbol g represents the index of the 
best particle among all particles in the population; c1 and 
c2 are called acceleration coefficients (namely cognitive 
and social parameters); ‘rand1()’ and ‘rand2()’ are uni-
form random numbers between zero and 1, and n is the 
iteration number. In eq. (1), the first term is the momen-
tum part, the second term is the cognitive component 
(personal knowledge), and the third term is the social 
component (group knowledge). The general effect of the 
equation is that each particle oscillates in the search 
space, between its previous best position and the best posi-
tion of its best neighbour, attempting to find the new best 
point in its trajectory. A time-step of unity is assumed in 
the velocity term of eq. (2). 
 In the PSO algorithm, first each particle is initialized  
with a random swarm of particles and random velocity  
vectors. Then the fitness of each particle is evaluated by  
the fitness function. Two ‘best’ values are defined, the  
global and the personal best. The global best (GBest) is  
the highest fitness value in the entire population (best  
solution so far), and the personal best (PBest) is the high-
est fitness value achieved by a specific particle over the 
iterations. Each particle is attracted towards the location 
of the ‘best fitness achieved so far’ across the whole 
population. In order to achieve this, a particle stores the 
previously reached ‘best’ positions in a cognitive mem-
ory. The relative ‘pull’ of the global and the personal best 
is determined by the acceleration constants c1 and c2. After 
this update, each particle is then revaluated. If any fitness is 
greater than the global best, then the new position becomes 
the new global best. If the particle’s fitness value is greater 
than the personal best, then the current value becomes the 
new personal best. This procedure is repeated till the termi-
nation criteria are satisfied. The pseudo-code of the PSO 
algorithm19 is presented in Figure 4. 

 
Begin 
 Initialize swarm position X(0) and velocities V(0) 
 Set iteration counter, n = 0 
 Repeat 
  Compute fitness function for each individual of swarm 
  Compute PBest(n) and GBest  
  Begin  (Perform PSO operations)  
    Compute V(n + 1) using velocity update rule 
    Compute X(n + 1) using position update rule 
  End 
  Set n = n + 1 
 Until termination criteria satisfied 
End 

 
Figure 4. Pseudo-code of the particle swarm optimization (PSO)  
algorithm. 
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Figure 5. Illustration of the working of the PSO algorithm, showing over the iterations how the parti-
cles explore the global optima. The colour scheme gives the quality of fitness value (objective value). 
Blue colour corresponds to minimum f, whereas dark red to maximum f. 

 
 
 For illustration of the PSO working principle, let us 
consider a simple function 

2 2( )( , ) e x yf x y x − −=  for maxi-
mization. The working of the PSO at various iterations is 
depicted in Figure 5. Let (a) at iteration = 0, ten particles 
are randomly initialized uniformly in their search space; 
(b) at iteration = 10, the particles are guided by the social 
and individual experiences gained over the few iterations 
and are exploring the better functional value; (c) at itera-
tion = 20, the particles are moving towards better fitness 
value and nearing the optimal value; (d) at iteration = 30, 
almost all the particles have reached the best solution in 
the search space. The darkness of colour from blue to red 
shows the variation of objective function value from 
minimum to maximum. 
 The solution of real-world problems is often difficult 
and time-consuming. Thus the application of bio-inspired 
algorithms in combination with the conventional optimi-
zation methods has also been receiving attention, with 
wider applications to practical problems1. 

Bee-inspired optimization 

These optimization algorithms are inspired by honey 
bees. There are two main classes of honey-bee optimiza-
tion algorithms: algorithms that utilize genetic and beha-
vioural mechanisms underlying the mating behaviour of 
the bee, and algorithms that take their inspiration from 

the foraging behaviour of the bee. The first class of opti-
mization algorithms makes use of the fact that a honey-
bee colony comprises a large number of individuals that 
are genetically heterogeneous due to the queen mating 
with multiple males. Many of the mating-inspired algo-
rithms extend the principles of optimization algorithms 
from the field of evolutionary computation by introducing 
bee-inspired operators for mutation or crossover. 
 Among the bee swarm algorithms for optimization, the 
HBMO algorithm that was inspired from the natural mat-
ing process of honey bees20, and the ABC algorithm that 
was inspired from simulating foraging behaviour of 
bees21 are receiving wider applications in different areas 
of science and engineering for solving various optimiza-
tion problems such as optimization of continuous func-
tions, data-mining, vehicle routing, image analysis, 
protein structure prediction, etc. 
 
ABC algorithm: This is a population-based algorithm 
inspired by the foraging behaviour of honey-bees21. In 
this metaphor, bees are the possible solutions to the pro-
blem, and they fly within the environment (the search 
space) to find the best food source location (best solu-
tion). 
 Honey-bee colonies have a decentralized system to col-
lect food and can adjust the searching pattern precisely  
in order to enhance the collection of nectar. Honey bees 
collect nectar from flower patches as a food source for 
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the hive from vast areas around their hive (more than 
10 km), and usually the number of bees going out is pro-
portional to the amount of food available at each patch. 
Bees communicate with each other at the hive via a waggle 
dance that informs other bees in the hive as to the  
direction, distance and quality rating of food sources. The 
exchange of information among bees is most important in 
the formation of the collective knowledge. 
 The basic idea concerning the algorithms based on the 
bee foraging behaviour is that foraging bees have a  
potential solution to an optimization problem in their 
memory (i.e. a configuration for the problem decision 
variables). This potential solution corresponds to the  
location of a food source and has an aggregated quality 
measure (i.e. value of the objective function). The food 
source quality information is exchanged through the 
waggle dance that probabilistically biases other bees to 
exploit food sources with higher quality. 
 The ABC algorithm works with a swarm of n solutions 
and x (food sources) of dimension d that are modified by 
the artificial bees. The bees aim at discovering places of 
food sources v (locations in the search space) with high 
amount of nectar (good fitness). In the ABC algorithm 
there are three types of bees: the scout bees that fly  
randomly in the search space without guidance; the  
employed bees that exploit the neighbourhood of their 
food sources selecting a random solution to be perturbed 
and the onlooker bees that are placed on the food sources 
using a probability based selection process. As the nectar 
amount of a food source increases, the probability value 
Pi with which the food source is preferred by onlookers 
also increases. If the nectar amount of a new source is 
higher than that of the previous one in their memory, they 

update the new position and forget the previous one. If a 
solution is not improved by a predetermined number of 
trials controlled by the parameter limit, then the food 
source is abandoned by the corresponding employed bee, 
and it becomes a scout bee. Each cycle of the search con-
sists of moving the employed and onlooker bees onto the 
food sources and calculating their nectar amounts, and 
determining the scout bees and directing them onto pos-
sible food sources. The ABC algorithm seeks to balance 
the exploration and exploitation by combining local 
search methods (accomplished by employed and onlooker 
bees), with global search methods (dealt by scout bees)21. 
The pseudo-code of the ABC algorithm is shown in  
Figure 6. 
 A brief comparison of different evolutionary computa-
tion algorithms and SI algorithms is given in Table 1.  
Detailed reviews of different EAs and their applications 
can be found in the literature22–25. 

Multi-objective optimization 

Recently, bio-inspired algorithms are becoming increas-
ingly popular for solving multi-objective optimization 
problems, and ensued in the development of various 
multi-objective evolutionary algorithms (MOEAs) and 
multi-objective swarm algorithms (MOSAs). This is due 
to their efficiency and easiness to handle nonlinear and 
nonconvex relationships of real-world problems1. Also, 
these algorithms have some advantages over the conven-
tional approaches, such as, use of population of solutions 
in each iteration helps to offer a set of alternatives in a 
single run, and randomized initialization and stochastic

 
 

Begin 
 Initialize the food positions randomly xi, i = 1, 2, …, n 
 Evaluate fitness f(xi) of the individuals 
 While stop condition not met Do 
  Employed phase: 
   Produce new solutions with k, j and φ at random  
   ϕ= + ⋅ −( ),ij ij ij ij kjv x x x ϕ∈ ∈ ∈{1, 2,..., }, {1, 2,..., }, [0,1]k n j d  
   Evaluate solutions 
   Apply greedy selection process for the employed bees 
  Onlooker phase: 
   Calculate probability values for the solutions xi 
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   Produce new solutions from xi selected using probability Pi 
   Evaluate solutions 
   Apply greedy selection for the onlookers 
  Scout phase: 
   Find abandoned solution: If limit exceeds, replace it with a new random solution 
   Memorize the best solution achieved so far 
 End While 
  Output the results 
End 

 
Figure 6. Pseudo-code of the artificial bee colony algorithm. 
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Table 1. Characteristics of different evolutionary computation and swarm intelligence (SI) algorithms 

Characteristic Genetic Differential Genetic Ant colony Particle swarm Artificial bee 
of algorithm algorithm evolution programming optimization optimization colony algorithm  
 

Algorithm type Genotypic/ Phenotypic Phenotypic Phenotypic Phenotypic Phenotypic 
  phenotypic 
 
Developed by Holland3 Storn and Price10 Koza8 Dorigo et al.14 Eberhart Karaboga21 
      and Kennedy15 
 
Basic principle Natural selection Survival of the Survival of the Cooperative group Cooperative group Collective 
   or survival of  fittest  fittest  intelligence of  intelligence of  knowledge 
   the fittest    swarm  swarm  of bees 
 
Solution  Binary/real- Real-valued Expression  Graph or a similar Real-valued Real-valued 
 representation  valued   trees  structure for   
      path-covering   
      of ants   
 
Fitness Scaled objective Objective Scaled Scaled Objective Objective 
  value  function value  objective value  objective value  function value  function value 
 
Evolutionary Mainly crossover Mainly mutation Crossover and None None None 
 operators  (other operator,  (other operator,  mutation  
   mutation)  crossover)   
 
Selection Probabilistic, Deterministic, Probabilistic, Probabilistic, Deterministic, Probabilistic, 
 process  preservative  extinctive  extinctive  preservative  extinctive  preservative 
 
Type of Applicable to Mainly for real Mainly for Mainly for Mainly for real Applicable to 
 decision  both real values  values (can be   real values  discrete values  values (applicable  both discrete 
 variables  and/or discrete  used for discrete    for discrete  and real values 
   values  variables)    variables) 
 
Applicability For all types of For all types of For all types of For all types of For all types of For all types of 
 to problems   problems   problems  problems  problems  problems  problems  
  (linear/  (linear/  (linear/  (linear/  (linear/  (linear/ 
   nonlinear)  nonlinear)  nonlinear)  nonlinear)  nonlinear)  nonlinear) 

 

 
search in their operation helps to overcome local optima. 
These special characteristics are helping the bio-inspired 
algorithms to achieve well-spread and well-diverse pareto 
optimal solutions in a single run quickly. Hence they are 
receiving wider applications in different areas ranging 
from robotics to water resources using MOEAs1,26–28 and 
MOSAs18,29–31. 

Artificial neural networks 

Artificial neural network (ANN) is another important 
computational method that was developed in the 1970s 
and 1980s, and is gaining popularity as a modern statisti-
cal data-modelling tool for many nonlinear, difficult-to-
represent and complex problems in science and engineer-
ing. The ANNs are inspired from a close examination of 
the central nervous system and the neurons, axons, den-
drites and synapses, which constitute the processing  
elements of biological neural networks as investigated by 
neuroscience experts32. In the ANN, simple artificial 

nodes (called neurons) are connected together to form a 
network of nodes mimicking the biological neural net-
works. A neural network consists of an interconnected 
group of artificial neurons, and it processes information 
using a connectionist approach to computation. The  
neural models are usually used to model complex rela-
tionships between inputs and outputs (called function  
approximation), or to find patterns in data (called pattern 
recognition)33. 
 In general, the ANN is an adaptive system that changes 
its structure based on external or internal information that 
flows through the network during the learning phase. To 
achieve robust learning from the given set of patterns, 
various kinds of neural network mechanisms are  
explored. These include feed-forward neural networks 
(FFNNs), recurrent neural networks, time-delayed neural 
networks, real-time recurrent neural networks, etc. A 
standard architecture of the FFNN is shown in Figure 7. 
 Network architecture mainly denotes the number of  
input and output variables, the number of hidden layers, 
and the number of neurons in each hidden layer. It
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Figure 7. Architecture of artificial neural network. a, Artificial neuron; b, Multilayered feed-forward neural network. 
 
 
determines the number of connection weights and the 
way information flows through the network. The sole role 
of the nodes of the input layer is to relay the external  
inputs to the neurons of the hidden layer. Hence the num-
ber of input nodes corresponds to the number of input 
variables. The outputs of the last hidden layer are passed 
to the output layer which provides the final output of the 
network. 
 Depending on the procedure through which ANNs  
establish the given task of function of approximation or 
pattern recognition, there are mainly two classes of net-
work training known as supervized and unsupervized 
learning. In supervized training, in order to learn the rela-
tionships, inputs and outputs are specified for each pat-
tern during the training period (e.g. FFNN); whereas in 
unsupervized training only inputs are specified to the 
neural networks and it should be able to evolve itself to 
achieve a specific task such as pattern recognition or 
classification (e.g. self-organizing maps). There are many 
methods to find optimal weights of neural networks33, 
such as error back-propagation algorithm, conjugate gra-
dient algorithm, cascade correlation algorithm, quasi-
Newton method, Levenberg–Marquardt algorithm, radial 
basis function algorithm, etc. Apart from this, EAs have 
also been proposed for finding the network architecture 
and weights of neural networks, and have been applied to 
various problems34,35. 
 ANNs are receiving increasing attention with wider 
applications for modelling complex and dynamic systems 
in science and engineering. Since any modelling effort 
will have to be based on an understanding of the variabil-
ity of the past data, ANNs have some special useful char-
acteristics in this regard. In contrast to conventional 
modelling approaches, ANNs do not require an in-depth 
knowledge of the driving processes, nor do they require 
the form of the model to be specified a priori25. Over the 
last two decades, ANNs have been used extensively to 
model complex nonlinear dynamics, which is not ade-
quately represented by linear models33,35. As the cited  
papers also include discussion on various applications, 
the interested reader may refer them for more details on 
specific applications. 

Concluding remarks 

Researchers have developed various algorithms for solv-
ing complex problems by modelling the behaviours of  
nature and biological processes, which resulted in several 
evolutionary computation and SI algorithms. EAs are  
inspired from Darwin’s principle of evolution – ‘survival 
of the fittest’. SI algorithms are inspired from biological 
activities such as food searching by the ants, bird flock-
ing, fish schooling, honey-bee mating process, etc. Algo-
rithms such as GA based on the theory of survival of the 
fittest, ACO based on ant swarm, PSO based on bird 
flock and fish schooling, and HBMO based on honey-bee 
mating have been proposed in various studies to solve  
optimization problems in science and engineering. These 
computational algorithms can provide acceptable optimal 
solutions to many complex problems that are difficult to 
cope using conventional methods (due to their nature that 
may imply discontinuities of the search space, non-
differentiable objective functions, nonlinear relationships 
or imprecise arguments and function values). Thus the 
use of these computational algorithms for solving practi-
cal problems is becoming more popular. Still there is a lot 
of scope for research and their applications in different 
areas of science, engineering and industrial problems. By 
considering the specific advantages of the EA and SI  
algorithms, it will be a wise idea to take benefit of the 
special advantages of these methods in solving practical 
problems. 
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