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Abstract
It was recently shown that the Madelung equations, that is, a hydrodynamic form 
of the Schrödinger equation, can be derived from a canonical ensemble of neural 
networks where the quantum phase was identified with the free energy of hidden 
variables. We consider instead a grand canonical ensemble of neural networks, by 
allowing an exchange of neurons with an auxiliary subsystem, to show that the free 
energy must also be multivalued. By imposing the multivaluedness condition on the 
free energy we derive the Schrödinger equation with “Planck’s constant” determined 
by the chemical potential of hidden variables. This shows that quantum mechan-
ics provides a correct statistical description of the dynamics of the grand canonical 
ensemble of neural networks at the learning equilibrium. We also discuss implica-
tions of the results for machine learning, fundamental physics and, in a more specu-
lative way, evolutionary biology.

1  Introduction

Despite the obvious success of quantum mechanics in description of our physical 
world, its conceptual status is still a subject of hot debates, see Refs. [1–5], to name 
just a few contemporary books; more references can be found in the recent papers [6, 
7]. As a result, many so-called “no-go theorems” were constructed (e.g. Bell’s ine-
qualities [8]) to rule out the existence of a hidden classical world beyond quantum 
mechanics [9]. Recently the idea of “emergent quantumness” was reincarnated in 
the programs like “the world as a matrix” [10], “the world as a cellular automaton” 
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[11, 12] and “the world as a neural network” [7, 13]. An alternative approach was 
suggested in the “logical inference” program [14–16], where quantum mechanics 
is considered as a purely phenomenological way to describe the results of repeated 
experiments assuming that (1) we cannot control all the details relevant for these 
experiments, (2) our description should be as robust as possible, and (3) it should 
follow some “axioms of rational thinking”. From this point of view, the question 
on the existence of the hidden world beyond quantum is claimed to be irrelevant: 
whatever this world is, we are forced, by the properties of our mind, to describe the 
reality via something similar to quantum theory.

At a phenomenological level, the “neural network” [7] and the “logical inference” 
[14–16] approaches are not contradictory, and may in some sense be dual to each 
other. Indeed, if our mind could be modeled as a neural network, then it is not too 
unreasonable to expect that the principles of work of the neural network [13] might 
be used to derive the postulated axioms of the logical inference [17]. This possibil-
ity is supported by the fact that in both approaches one is able to derive Schrödinger 
equation [7, 14] by combination of some entropic variational principle aimed to pro-
vide the most robust and efficient description of the external world with some form 
of the Hamilton–Jacobi equations (see also Refs. [18, 19] for other derivations based 
on entropic principles.) There is, however, an important flaw in these constructions, 
explicitly mentioned in Ref. [14]. What is actually derived, in both cases, is not the 
Schrödinger, but the Madelung [20] hydrodynamic equation which is known to be 
different from the Schrödinger equation [21]. The key difference is in the global 
topology. In the Madelung form of the Schrödinger equation, we introduce the “fluid 
density” which is related, in quantum language, to the modulus of the wave function, 
and the “fluid velocity” which is related to a gradient of the phase of the wave func-
tion. However, in the Schrödinger equation the phase is defined modulo 2 � (we glue 
the plane to a cylinder) and in the Madelung equation this condition is lost. With-
out it, the Madelung hydrodynamics describes only a very special kind of hydrody-
namic flows, that is, curlless (without vortices) whereas the crucial point of quan-
tum physics, the quantization (in particular, discreteness of atomic energy levels) is 
associated with discreteness of circulation, like in superconductors and superfluids 
[22, 23].1 In some inexplicit way, this change of topology simplifies the description 
allowing to pass from the nonlinear Madelung equations to the linear Schrödinger 
equation adding extremely powerful machinery of vectors and operators in a Hil-
bert space. Phenomenologically, it can be justified by introducing a new principle 
of “separation of conditions” [6], logically independent from the logical inference 
approach. However, due to extreme importance of this point one needs to have a 
more detailed understanding of its origin. In this paper we will show that the neural 
network approach gives a natural way to understand this transition and thus allowing 
to understand deeper the origin and meaning of one of the most fundamental physi-
cal constants, namely, the Planck constant.

1  MIK thanks Grigory Volovik for emphasizing this connection at our old discussions of the logical 
inference approach.
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The other point of a great interest is a very controversial, but tempting, idea of 
“emergent quantumness”, that is, some quantum-like behavior of systems which are 
difficult to believe to be quantum per se [24]. Some authors use quantumness just 
as a metaphor to describe cultural phenomena [25] or genotype-phenotype duality 
in biological evolution [26], while others suggest the relevance of the true quantum 
phenomena in human brains [27, 28]. On a more practical level, this line of thinking 
may be related to a much more pragmatic and solid concept of “quantum annealing” 
[29–34]. For example, if some optimization problem can be stated as the problem 
of finding a ground state of a complicated classical system, then it is often conveni-
ent to add to the system some “quantumness” because the quantum tunneling would 
prevent a self-trapping of the optimization process in one of metastable states. We 
will show here that the neural network approach gives a natural explanation of the 
emergent quantumness and provides a solid formal background for speculations on 
quantum behavior of non-quantum (e.g. macroscopic and even biological) systems.

The paper is organized as follows. In Sect. 2 we apply the principle of station-
ary entropy production to derive a functional which governs the emergent dynam-
ics of neural networks. In Sect. 3 we argue that the dynamics can be described by 
the Schrodinger equation if and only if the free energy of the hidden variables is a 
multivalued function. In Sect. 4 we construct a grand canonical ensemble of neural 
networks and show that the corresponding free energy is multivalued. In Sect. 5 we 
discuss in more detail some fundamental issues such as the difference between pure 
and mixed states, role of measurements and relations to path-integral formulation of 
quantum mechanics [35–37]. In Sect. 6 we discuss implications of the main results 
for machine learning, physics and biology.

2 � Stationary Entropy Production

Consider a learning system described by a coupled dynamics of trainable variables, 
� , and non-trainable or hidden variables, � . In “epistomological” kind of approaches 
[6, 14–16] one can identify the trainable variables with characteristics of a human 
mind whereas the hidden variables represent an external world, but this identifica-
tion is not needed for our formal consideration which we will try to keep as general 
as possible. In context of artificial neural networks the trainable variables determine 
the weight matrix and bias vector, and the hidden variables represent the state vector 
of neurons [13]. It is assumed that on the shortest time-scales the dynamics of the 
trainable variables undergoes diffusion

and the dynamics of hidden variables is only described through its free energy
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where the trainable variables experience a classical drift in the direction of the gra-
dient of the free energy,

(See Refs. [7, 13] for details.) We shall assume that the drift � and diffusion D coef-
ficients are constants (independent of � ), but their numerical values depend on a 
learning algorithm. For example, if a neural network is trained using the stochastic 
gradient descent, then � and D depend on the learning rate and the mini-batch size 
[38]. Note that the system under consideration is supposed to be, initially, purely 
classical and subjected by stochastic and, moreover, dissipative dynamics described 
by equations (1)–(3). One can think in particular on conventional neural network 
algorithms realized at normal classical computers, nothing specifically quantum is 
assumed yet.

To describe the dynamics on longer time-scales we employ the principle of sta-
tionary entropy production:

Principle of Stationary Entropy Production The path taken by a system is the one 
for which the entropy production is stationary.

The principle was first introduced in Ref. [19] as a generalization of both, the 
maximum entropy principle [39, 40] and the minimum entropy production principle 
[41, 42]. In context of the neural networks the entropy production must be maxi-
mized in an optimal neural architecture [7, 13]. The rationale behind it is simple: if 
less information is used for optimizing the network for past data, then more entropy 
is available for optimizing the network for future data and, therefore, a larger space 
of solutions can be explored. With this respect the principle can be thought of as a 
formalization of the Occam’s razor principle.2

The Shannon entropy of the trainable variables is given by

and the total entropy production can be calculated from (1),

(2)
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2  We thank Nikolay Mikhailovsky for pointing out the connection to Occam’s razor principle.
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The two terms represent the entropy production due to stochastic and learning 
dynamics of the trainable variables. At a learning equilibrium (i.e. ∇F ∼ 0 ) the 
entropy production of the trainable variables due to learning is subdominant and the 
total entropy production of trainable variables (5) can be approximated as

Note that this term is nothing but Fisher information which determines metrics 
in the information space [43] and plays an important role in the logical inference 
approach to quantum mechanics [14–16] and in the information theory approach to 
emergent gravity [44]. Further away from the equilibrium the entropy production 
due to learning cannot be ignored and the dynamics is better described by a classical 
Hamiltonian mechanics with the free energy, F, identified with the Hamilton’s prin-
ciple function (see [7] for details on both classical and quantum limits).

The problem of optimization of the entropy production (6) subject to a con-
straint (2) can be solved using the method of Lagrange multipliers by defining a 
functional [7]

where the total time-averaged free energy production pre unit time step � is

Again, the time step � here is just a parameter of our neural network related to the 
rate of computation at a given realization of the neural network algorithm and is not 
related to any fundamental physical constants such as Planck time, etc. We postpone 
the discussion of the fundamental physics till the last section, meanwhile it is better 

(5)

dSq(t)

dt
= − ∫ dKq p

� log(p)

�t
− ∫ dKq log(p)

�p

�t

= −
d

dt ∫ dKq p − ∫ dKq log(p)
�p

�t

= − ∫ dKq log(p)
∑

k

�

�qk

(
D

�p

�qk
− �

�F

�qk
p

)

=D∫ dKq
∑

k

1

p

(
�p

�qk

)2

− � ∫ dKq
∑

k

�p

�qk

�F

�qk
.

(6)
dSq(t)

dt
≈∫ dKq

√
p

�
−4D

�

k

�2

�q2
k

�
√
p.

(7)

S[p,F, �] =∫
T

0

dt
dSq

dt
+ �∫

T

0

dtdKq p

�
�F

�t
+ �

�

k

�
�F

�qk

�2

+
V

�

�
,

=∫
T

0

dt dKq
√
p

�
−4D

�

k

�2

�q2
k

+ �
�F

�t
+ ��

�

k

�
�F

�qk

�2

+ �
V

�

�
√
p,

(8)V(�) ≡ −
⟨
�
d

dt
F(t, �)

⟩

t
.



	 Foundations of Physics (2021) 51:94

1 3

94  Page 6 of 20

to keep in mind just some more or less standard computations on more or less stand-
ard computers.

Note that the logical inference approach [14] leads to a technically very simi-
lar formulation, the principle of robustness of description shown to be equivalent 
to the minimum of Fisher information, but the second requirement, correctness of 
the Hamilton-Jacobi equations at the average, was postulated as a property of our 
world, in spirit of Bohr’s correspondence principle. The neural network approach [7] 
provides us an explicit model with the phenomenologically desired properties. Of 
course, strictly speaking, one cannot exclude existence of other models which lead 
to more or less the same phenomenology, but this model seems to be, in some sense, 
the most natural.

It is convenient to rewrite the functional (7) as

where

and

The constant (11) will play the role of the Planck constant in the further consid-
eration but currently it is just a combination of some parameters characterizing our 
neural network, and it is not assumed to be either microscopic or fundamental. Gen-
erally speaking, different neural networks can have different “Planck constants”, and 
one can, in principle, even assume a variable “constant” during the computation.

The main difference between (7) and (9) is that instead of solving the equations 
for p, F and � , we are now solving them for p, F and ℏ . The optimal solutions are 
obtained by setting all possible variations of (9) to zero
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3 � Schrödinger Dynamics

In the previous section we derived the functional (9) which describes the total 
entropy production of the trainable variables � subject to a constraint imposed on 
the dynamics of free energy of the hidden variables � . The stationary solutions for 
probability density, p(t, �) , free energy, F(t, �) and “Planck constant”, ℏ , are given 
by equation (12), which represents conservation of entropy

and by equations (13) and (14), which are the Madelung hydrodynamic equations 
[20]

with velocity of the fluid

It is well known that the Madelung equations can be derived from the Schrödinger 
equation

where the wave function is defined as
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This can be accomplished by constructing a statistical ensemble of neural networks 
for which the discrete shift, �n , is not observable. In the following section we shall 
consider one such ensemble, the grand canonical ensemble with chemical potential, 
� , for which the exact number of neurons is unobservable and, therefore, the free 
energy is multivalued (21). Note that the proportionality of thermodynamic poten-
tials to the number of particles in a thermodynamic limit (a very large number of 
degrees of freedom), which is crucially important for our whole construction, can be 
proven mathematically rigorously for a broad class of continuous and lattice models 
of statistical mechanics [45].

If we assume for a moment that the multivaluedness condition (21) is satisfied, then 
(9) can be rewritten as

where

If n ∈ ℤ is indeed unobservable, then S[p,F,ℏ] should not depend on n which is 
guaranteed only if

for some m ∈ ℤ . If that would not be true, then by studying changes in the action 
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m ≠ ±1 , then there are transformations

which leave S[p,F,ℏ] invariant, but n∕m ∉ ℤ , e.g. n = 1 , m = 2 and n∕m = 1∕2 . If 
this is the case, then the parameter � in (21) was not chosen correctly to describe the 
unobservability in F. Instead the parameter must be rescaled � → ±�∕m and then 
(25) reduces to (21) and equation (24) becomes
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where the wave function Ψ is given by (20). Therefore, if the multivaluedness con-
dition (21) is satisfied, then the Planck constant must be given by (26) and then the 
Schrödinger action (27) provides a correct statistical description of the learning 
dynamics of neural networks.

4 � Grand Canonical Ensemble

Consider a neural network at a learning equilibrium described by a temperature 
parameter, T, and, in addition, with a possible access to a reservoir of auxiliary 
neurons described by a chemical potential, � . What this means is that the learn-
ing algorithm is such that the system can either increase (i.e. neurogenesis) or 
decrease (i.e. neurodegeneration) the total number of active neurons, N. It is not 
immediately clear that such an algorithm would be present in an optimal learning 
system, but this is something that we will discuss shortly. Meanwhile, the very 
fact that the exact number of active neurons (or hidden variables) N is unknown 
suggests that the system should be modeled with a grand canonical ensemble. 
The corresponding thermodynamic potential is the grand (or Landau) potential

where

For a system kept at an equilibrium with constant temperature, T, and chemical 
potential, � , the fundamental thermodynamic relations is

The relation (30) can be regarded as a generalization of the first law of learning that 
was introduced in [7, 13] in context of a canonical ensemble of neural networks.

According to the first law (30) the free energy, F, can undergo both continu-
ous transformations due to dynamics of trainable variables, � , and discontinuous 
transformations due to dynamics of the number of neurons, N. This implies that 
the free energy must be “quantized” in the following sense

Since the exact number of active neurons, N, in the grand canonical ensemble is 
unknown, the free energy F is only known up to an additive constant �n where 
n ∈ ℤ . If we identify � in (21) with chemical potential of the grand canonical 
ensemble, then the unobservability of the number of active neurons implies the mul-
tivaluedness condition (21). Strictly speaking, the condition is only satisfied if the 
integer n in (21) remains smaller than the uncertainty in the number of neurons

(28)Ω(�, T ,�) = F − �N

(29)� =
�F

�N
.

(30)dΩ = dF − �dN = 0.
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In the limit n ≪ ΔN the multivaluedness condition is satisfied and the Schrödinger 
equation provides a good statistical description of the learning dynamics, but in the 
opposite limit n ≳ ΔN the Schrödinger description is expected to break down. How-
ever, one can argue that in an optimal neural network the parameter ΔN must be 
maximized which would make the behavior of the system as quantum as possible.

Indeed, for every “macroscopic” solution for trainable variables, � , there is a statisti-
cal ensemble of microscopic solutions for hidden variables, � . With this respect the 
grand canonical ensemble, ΔN ≠ 0 , provides a clear advantage over canonical ensem-
ble, ΔN = 0 , as it allows for a much larger number of microscopic solutions corre-
sponding to different values of the number of active neurons, N. More precisely, if the 
system has access to ∼ 2ΔN auxiliary neurons, then each of these neurons can either be 
active or not active, and then the additional entropy is given by

This entropy describes the additional “macroscopic” solutions for trainable vari-
ables, � , which can have discontinuous jumps in the free energy (21) due to uncer-
tainty in the total number of neurons (32). Therefore, an optimal neural network 
must be described by a grand canonical ensemble with the largest possible ΔN for 
which the multivaluedness condition (21) would be maximally satisfied. This estab-
lishes an equivalence between quantum mechanics and an optimal learning system 
described by a grand canonical ensemble of neural networks.

Whether the free energy F (and the loss function U = F − TSx ) is “quantized” (31) 
and whether it can change discontinuously depends on the learning system. In Ref. [13] 
it was shown numerically that for the bulk loss function the discontinuous jumps are 
suppressed, but for the boundary loss function the discontinuous jumps are expected 
even when the total number of neurons is kept constant. This result agrees very well 
with our analysis of the grand canonical ensembles and with the first law of learning 
(30). Indeed, from the point of view of the bulk neurons the total number of neurons is 
constant, the relevant statistical ensemble is canonical and the discontinuous jumps do 
not occur,

On the other hand, from the point of view of only boundary neurons, some of the 
bulk neurons can act as a reservoir of auxiliary neurons, the relevant ensemble is 
grand canonical and the discontinuous jumps are expected,

(32)ΔN =
√
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Therefore, in addition to theoretical considerations we also have preliminary numer-
ical results suggesting that the discontinuous jumps in the boundary loss function is 
a result of the learning dynamics described by a grand canonical ensemble.

Using the “quantization” of the free energy (31) and the optimal value for the 
Planck constant (26), the wave function (20) can written as

As an example, consider a grand potential which can be expressed as a sum of a 
fixed time-independent term and a time-dependent term, i.e.

In such limit the Schrödinger action (19) can be rewritten as

where the new wave function is now defined as

and

Then upon variation of the action with respect to the new wave function we get

Note that the result is only valid when the time-independent term, Ω0(�) , is fixed 
(i.e. is not varied), which is exactly the limit in which the Schrödinger equation (40) 
provides a good description of a quantum particle with “charge” e in an external 
field described by the “vector potential ”, �.

5 � Quantum Superpositions
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struction. The main difference between Madelung and Schrödinger equations is that 
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the Schrödinger dynamics is linear and thus can be expressed in any orthonormal basis 
without loosing the generality. What is less clear is how to put the system in an arbi-
trary initial state or how to measure the system with respect to arbitrary measurement 
operators. In particular, it is not clear how to start the dynamics in a superposition of 
position eigenstates or how to perform measurements using non-diagonal (in the posi-
tion basis) measurement operators.

The concept of measurement plays a central role in quantum physics, as especially 
emphasized in Bohr’s complementarity principle [46, 47]. What we deal with is never 
a “quantum system by itself” but a result of its interaction with some measurement 
devices, and we can choose different descriptions choosing different sets of devices. 
For example, we can measure either coordinate of a particle by a local detector which 
clicks when the particle interacts with it or momentum of the particle via its wave prop-
erties, using to this aim diffraction lattices, etc. For the case of neural networks the 
coordinate representation is special. It is very straightforward to measure the set of � 
at a given time instant, this information is directly available at the computer. At the 
derivation of Schrödinger equation in logical inference approach [14] the space is sup-
posed to be filled by coordinate detectors as well whereas measurement of momenta is 
not so easily realizable even as a gedanken experiment. Note however that the quantum 
mechanics allows a purely space-time formulation which was realized in Feynman’s 
path integral approach [35]. Mathematically speaking, the solution of the Cauchy prob-
lem for the Schrödinger equation can be presented as a path integral, via splitting of 
the evolutionary operator into many elementary factors with the further use of Trot-
ter decomposition formula [36]. All interference phenomena, energy quantization and 
other specifically quantum phenomena follow immediately from this representation 
[35–37]. Importantly, the trajectories giving the main contribution to the path integral 
are continuous but not continuously differentiable [48] which means impossibility of 
simultaneous measurements of coordinates and velocities. Coming back to the operator 
language, one can discuss the measurements of noncommutative coordinate operators 
at different time instants rather than the measurements of noncommutative coordinate 
and velocity operators at the same time instant. Therefore furthe we will discuss only 
measurements of the coordinates �.

In artificial neural networks numerical values of the trainable variables � are only 
known up to numerical precision and so after measurement in a position basis the sys-
tem can only be in one of a finite number of states, i.e. � ∈ {�1, �2, ..., �M} . Using the 
bra-ket notations the position eigenstates are given by

and the most general initial state can be expressed as a linear superposition

It is certainly possible to use a random number generator to set the initial state to be 
in a state ��i⟩ with probability pi = |Ψ(0, �i)|2 , but then the system would not be in a 

(41)��⟩ ∈ {��1⟩, ��2⟩, ..., ��M⟩},

(42)�Ψ(0)⟩ =
M�

i=1

Ψ(0, �i)��i⟩.
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pure state (42). Such states are known as mixed states that are usually described by 
a density matrix

It seems that the only way for a system to remain in a pure state is through unitary 
evolution which can in general be time-dependent. Then to prepare a superposition 
state (42) at time t = 0 we can pre-evolve it starting from a position eigenstate ��j⟩ at 
time t = −t− , i.e.

where Ĥ− is the pre-evolution Hamiltonian operator. Note that Ĥ− emerges from a 
microscopic loss function and a training dataset which need not be the same as for Ĥ 
which governs the main part of the evolution

It is important to emphasize that although the loss functions, training datasets and 
emergent Hamiltonians for pre-evolution and main evolution can differ, the neural 
architectures, described by trainable � and non-trainable � variables, must remain 
the same. Of course, this does not guarantee that we can use the pre-evolution to 
prepare all possible superposition states, but by modifying t− (or pre-evolution time 
interval) and Ĥ− (or pre-evolution loss function and training dataset) a larger variety 
of pure initial states can be realized. Also note that on top of realizing superposition 
states one can still use a random number generator to create a mixed state by starting 
the pre-evolution with (43) and then the density matrix at time t = 0 would be

which need not be diagonal.
What about measurement operators? Can we use a similar method to (effec-

tively) measure the system using non-diagonal measurement operators,

If the quantum description is correct then the probability of observing a given meas-
urement operator must be given by

where

(43)𝜌̂ =

M�

i=1

pi��i⟩⟨�i�.

(44)�Ψ(0)⟩ = e−it−Ĥ−∕���j⟩

(45)�Ψ(T)⟩ = e−iTĤ∕��Ψ(0)⟩.

(46)𝜌̂(0) = e−it−Ĥ−∕�

�
M�

i=1

pi��i⟩⟨�i�
�
eit−Ĥ−∕�

(47)Ôm ≡
M�

i,j=1

O
(m)

ij
��i⟩⟨�j�?

(48)p(m) = ⟨Ψ(T)�Ô†
m
Ôm�Ψ(T)⟩
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For diagonal measurement operators (denoted by D̂m’s) the probabilities are given 
by

and by measuring positions �i’s, probabilities |Ψ(T , �i)|2 ’s can be calculated and 
p(m)’s can be verified against theoretical predictions. However, for non-diagonal 
measurement operators

and the knowledge of probabilities |Ψ(T ,�i)|2 is not sufficient for calculating p(m)’s 
or for performing measurements of the corresponding operators. On the other hand, 
what one can do is to post-evolve the state �Ψ(T)⟩ to �Ψ(T + t+)⟩ using some post-
evolution Hamiltonian Ĥ+ , i.e.

and then measure it using some set of diagonal operators D̂m’s. Then the probabili-
ties of measuring D̂m ’s would be given by (50), which can be calculated and verified 
against theoretical predictions, but the same probabilities can also be expressed as

i.e. as probabilities of effectively measuring non-diagonal operators

Of course, there is no guarantee that we would be able to effectively measure all pos-
sible sets of the measurement operators since the procedure is still limited by pos-
sible choices of the post-evolutionary Hamiltonian Ĥ+ (or loss function and training 
dataset) and time interval t+.

(49)
∑

m

Ô†
m
Ôm = Î.

(50)p(m) =

M∑

i=1

|||D
(m)

ii

|||
2||Ψ(T , �i)||

2

(51)p(m) =

M∑

i=1

||||||

M∑

j=1

O
(m)

ij
Ψ(T , �j)

||||||

2

,

(52)�Ψ(T + t+)⟩ = e−it+Ĥ+∕��Ψ(T)⟩,

(53)p(m) =⟨Ψ(T + t+)�D̂†
m
D̂m�Ψ(T + t+)⟩

(54)=⟨Ψ(T)�eit+Ĥ+∕�D̂†
m
e−it+Ĥ+∕�eit+Ĥ+∕�D̂me

−it+Ĥ+∕��Ψ(T)⟩

(55)=⟨Ψ(T)�Ô†
m
Ôm�Ψ(T)⟩,

(56)Ôm = eit+Ĥ+∕�D̂me
−it+Ĥ+∕�.
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6 � Discussion

In this paper we analyzed the emergent macroscopic dynamics of neural networks, 
but deliberately omitted specifications of the microscopic dynamics. The only 
important microscopic ingredient was that there are two types of degrees of free-
dom which correspond respectively to trainable and hidden variables. In the emer-
gent picture the trainable variables were identified with the variables of the wave 
function, but the hidden variables were only described at the level of statistical 
ensembles. In fact, it was not even important whether the hidden variables are actu-
ally non-trainable or only appear to evolve as non-trainable variables, but what was 
important is that their statistics can be described with a grand canonical ensemble. 
In this respect one can argue that the emergent quantumness is a generic macro-
scopic prediction of any learning system with a coupled dynamics of these two types 
of variables, i.e. trainable and hidden.

It is also worth emphasizing that the trainable variables were assumed to be con-
tinuous and the configuration space was assumed to be flat. More generally some of 
the variables (hidden or trainable) can be either discrete or the configuration space 
can be curved. In such cases the derivatives would be replaced with either finite 
differences or with covariant derivatives, but this would not alter the main conclu-
sion of the paper. In fact, we expect that in more realistic models of neural network 
(which could give rise to emergent quantum field theories and gravity) the trainable 
variables must include features of both discrete variables and curved spaces. On the 
other hand, the discreteness of the neural network (i.e. the number of neurons is a 
discrete integer) is a crucial point of the whole construction and for the main result, 
i.e. the emergence of quantumness. This result has some immediate and important 
implications for machine learning, physics and biology that we shall discuss next.

6.1 � Machine Learning

Machine learning is perhaps the simplest example of a learning system which has 
some apparent advantages over physical and biological systems. Artificial neural 
networks are well defined mathematically and, as such, provides an excellent experi-
mental platform for testing the new ideas numerically. There are at least three (not 
unrelated) ideas which follow directly from our results. According to our analysis an 
optimal learning system should be based on an algorithm which allows for the num-
ber of hidden variables to vary. One way to allow the number of hidden variables to 
change is to develop an algorithm designed specifically for addition and removal of 
the auxiliary neurons. In this respect it might be useful to develop a neurodegenera-
tion method for removing neurons that causes the smallest increase in the loss func-
tion and a neurogenesis method for adding auxiliary neurons that causes the largest 
decrease in the loss function.

Another possibility is to develop an algorithm in which the change in the num-
ber of hidden variables would occur dynamically. We expect that this is what might 
actually be happening behind the scenes in deep learning. If correct, this suggests a 
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simple and intuitive explanation of why the deep neural networks (with many hid-
den layers) are very effective in learning. The reason might be that the bulk neurons 
on the hidden layers can act as a reservoir of auxiliary neurons and the correspond-
ing ensemble becomes grand canonical. In such a limit the correct effective descrip-
tion of the learning dynamics of the boundary system is quantum with all of the 
computational advantages which come with it. Perhaps a lot more importantly, the 
emergent quantumness implies that one might be able to design an artificial neural 
network which can mimic the behavior of a quantum computer. Of course, such an 
artificial quantum computer would not be quantum per se, but one could still make it 
maximally quantum by designing an algorithm which maximizes the uncertainty in 
the number of active neurons.

6.2 � Physics

We can now try to tackle the somewhat more difficult problem of modeling physi-
cal systems using neural networks. Indeed, if quantum mechanics provides a good 
description of the physical world and a good description of the neural networks, then 
why cannot the physical word be a neural network? This was precisely the ques-
tions that was asked in Ref. [7] where not only quantum mechanics, but also gravity 
and observers were described as emergent phenomena. (See Refs. [49–52] for other 
approaches to emergent gravity). In this paper we concentrated mostly on the emer-
gent quantum behavior of the neural networks, but our results have some interesting 
implications for both gravitational and biological systems. Our main quantum result 
is that the correct statistical ensemble of hidden variables is the grand canonical 
ensemble, where the chemical potential is what determines the valued of the physi-
cal “Planck constant”. In the quantum limit the learning system satisfies the follow-
ing two conditions: 

(1)	 The system is at a learning equilibrium (i.e. small gradient of the free energy) 
and

(2)	 The quantum phase is multivalued (i.e. large uncertainty in the number of neu-
rons). However, since the emergent quantum behavior is only approximate, it is 
also important to identify the systems in which significant deviations from the 
quantum behavior are expected. For example, for a canonical ensemble of hid-
den variables the conditions (1) can be satisfied, but the condition, (2) is badly 
violated and then the system is better described with the Madelung equations. 
In an opposite limit, when the condition (2) is satisfied, but the condition (1) is 
violated, the system is better described with the Hamilton-Jacobi equations (see 
Ref. [7] for details).

Perhaps a more surprising aspect of the learning dynamics is that one might be able 
to derive a couple of dual descriptions of the very same system. In a “boundary” 
description one keeps track of only a small number of trainable variables which have 
already thermalized, i.e. satisfying the condition (1), and the rest of the variables 
are treated as hidden variables whose total number is unknown, i.e. satisfying the 
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condition (2). In a “bulk” description one keeps track of most of the trainable vari-
ables which can be very far from the true equilibrium, i.e. violating the condition 
(1), and the total number of hidden variables is small and its fluctuations are also 
small, i.e. violating the condition (2). For the boundary system the correct emer-
gent description is quantum, but for the bulk system the correct description is mostly 
classical and in some cases gravitational [7]. This resonates well with a holographic 
conjecture which states that a gravitational system in the bulk should have a quan-
tum dual description on the boundary [53–55]. Indeed, if the microscopic neural 
network is being trained by processing the new training data through its bound-
ary (as for example in the deep feedforward neural networks), then the boundary 
neurons should be the first to thermalize. Moreover, from the point of view of the 
boundary neurons the ensemble of hidden variables is in a grand canonical equi-
librium, and then the emergent dynamics is quantum. On the other hand, the bulk 
neurons would be further away from the equilibrium and their emergent dynamics 
would be mostly classical and, perhaps, in some limits gravitational [7]. This offers 
an interesting new perspective on the holographic principle and on gravity as an 
emergent phenomenon. (See also Ref. [56] for an alternative approach to gravity and 
holography in context of neural networks.)

The emergent quantumness also provides a new twist to the long-standing prob-
lem of derivation of irreversible macroscopic laws from reversible microscopic 
ones. The basic equations determining the dynamics of neural network are already 
irreversible, due to the presence of diffusion terms with real diffusion coefficient 
(contrary to imaginary diffusion coefficient in time-reversal symmetric Schrödinger 
equation), and it is the reversibility of the microscopic laws turns out to be an emer-
gent phenomenon, due to negative entropy production during learning. The negative 
entropy production is the direct consequence of the second law of learning, i.e. the 
total entropy can never increase during learning and is constant in the learning equi-
librium [7, 13]. Then, after the equilibrium is reached, any positive entropy produc-
tion due to diffusion of trainable variables must be balanced by the negative entropy 
production of either trainable or hidden variables. On the shortest time scales the 
interplay between positive and negative entropy productions can be expressed 
explicitly by including respectively the diffusion and drift terms in the Fokker-
Planck equation, but on the longer time scales the entropy balance is expressed as an 
optimization problem which can be described by the Schrödinger equation. There-
fore, for the long time scale dynamics there is an emergent time reversal symmetry, 
but on the short time scales the symmetry must be broken.

6.3 � Biology

From a biological perspective, it is very tempting to speculate whether our mind can 
be modeled as a neural network which undergoes a learning evolution. In that case, 
its behavior near equilibrium should indeed resemble the quantum systems since it 
would be described by an effective Schrödinger equation. Of course, the effective 
Planck constant arising in such an equation has nothing in common with the real 
physical Planck constant. In this sense, our approach is essentially different from 
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those of Refs. [27, 28] where the relevance of truly quantum processes in our bod-
ies for our mind is suggested. The other point worth to be emphasized is that, in our 
approach, only a fully optimized neural network has this property of “quantumness”. 
Of course, it is not obvious at all whether our real brains originated from a real bio-
logical evolution on a specific planet are optimal enough to be “quantum”. Any sug-
gestions of such kind would be unavoidably very speculative, but, in our opinion, 
deserve to be considered.

Speaking more generally on the biological evolution, one should mention Ref. 
[26] where the question of what kind of physics would be needed to describe evolu-
tion is discussed. The key point is a coexistence of two levels (genotype and pheno-
type) which is essentially entangled in a very unusual way from the point of view 
of conventional statistical mechanics. Physical carriers of genetic information are 
(very roughly speaking) macromolecules subjected to thermal fluctuations, electro-
static interactions, with electronic structure determined by quantum mechanics, etc. 
However, the functionality of the genetic information carriers cannot be adequately 
described in terms of their physical properties only. They are projected to a pheno-
type level, and at this level are subjected to selection with the laws which are also in 
agreement with general laws of physics and chemistry (as we believed), but act on a 
completely different level of macroobjects. This was compared with the role played 
by von Neumann measurements due to interaction with macroscopic measuring 
devices in quantum mechanics [26]. In this regard, the concept of emergent quan-
tumness via neural network approach developed here might be useful for specifica-
tion and formalization of this, still vague and preliminary, analogy. Anyway, there 
seems to be a clear association of genotype-phenotype duality in biology to the dual-
ity of hidden and trainable variables in neural networks. Another thought-provoking 
question is the utility of “quantum jumps” in the fitness values in the “quantum-like” 
evolutionary dynamics, but it obviously goes far beyond the scope of this particular 
work and deserves a separate consideration.
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