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Abstract—Today’s high-performance computing (HPC) plat-
forms are still dominated by batch jobs. Accordingly, effective
batch job scheduling is crucial to obtain high system efficiency.
Existing HPC batch job schedulers typically leverage heuristic
priority functions to prioritize and schedule jobs. But, once
configured and deployed by the experts, such priority functions
can hardly adapt to the changes of job loads, optimization
goals, or system settings, potentially leading to degraded system
efficiency when changes occur. To address this fundamental issue,
we present RLScheduler, an automated HPC batch job scheduler
built on reinforcement learning. RLScheduler relies on minimal
manual interventions or expert knowledge, but can learn high-
quality scheduling policies via its own continuous ‘trial and er-
ror’. We introduce a new kernel-based neural network structure
and trajectory filtering mechanism in RLScheduler to improve
and stabilize the learning process. Through extensive evaluations,
we confirm that RLScheduler can learn high-quality scheduling
policies towards various workloads and various optimization
goals with relatively low computation cost. Moreover, we show
that the learned models perform stably even when applied to
unseen workloads, making them practical for production use.

I. INTRODUCTION

Today’s high-performance computing (HPC) platforms are
still dominated by batch jobs. On such a platform, jobs are
submitted to a centralized job scheduler via job scripts and
wait in a job queue until the scheduler allocates the requested
resources for them to execute. Once start, the jobs will run til
finish, or fail, or get killed, in a batch way [1].

A batch job scheduler is designed to schedule jobs to obtain
an optimization goal (or called metrics), such as maximizing
resource utilization, maximizing job throughput, or minimizing
Jjob wait time, etc. Theoretically, batch job scheduling is NP-
Hard [2]. In practice, the HPC schedulers make scheduling
decisions via heuristic priority functions, which assign each
job a priority based on its attributes.

In the context of batch job scheduling, the priority functions
have been extensively studied [3-12]. In particular, some
functions rely on a single job attribute, such as submission
time (First Come First Server, FCFS) or job duration time
(Shortest Job First, SJF) [13]. Some compute priorities based
on multiple job attributes [10-12]. Recently, researchers pro-
posed to use advanced algorithms, such as utility functions [3]
or machine learning techniques [4], to build priority functions.
A more detailed description about these schedulers and their
priority functions can be found in Table III in §V.

However, no matter how a priority function is constructed
(e.g., via careful workload analysis or yearly experts expe-
riences), the forementioned schedulers share the same draw-
back: it is fixed and cannot automatically adapt to the vari-
ations in the target environment. On typical HPC platforms,
job workloads may shift month by month and the optimization
goals may also vary across time. For instance, when a cluster
is deployed initially, system administrators may set the goal
as high resource utilization and later change it to low average
waiting time for addressing user interests.

Manually tuning priority functions towards changing work-
loads or optimization goals is possible, but tedious and error-
prone even for the most experienced system administrators.
Alternatively, an automated strategy would be more attractive.
This motivates us to explore reinforcement learning (RL)
methods [14, 15] in batch job scheduling. Ideally, an RL-based
job scheduler will adapt to the varying job load as RL can
continuously learn from trial-and-error as the load varies; the
scheduler will also adapt to various optimization goals as RL
can automatically learn the ‘best’ policies for given rewards
without manual intervention.

However, in practice, several key questions need to be
answered before using RL in HPC batch job scheduling:

e Can RL yield high-quality scheduling policy that is
comparable to or even better than fine-tuned state-of-
the-art scheduling policies, across various workloads and
different optimization goals?

o Is the RL-based scheduling policy only usable to its
training workload or generally applicable to different
workloads? In another words, will an RL-based policy
still schedule jobs effectively on the new workloads that
it never sees before?

o What are the key factors that affect the learning efficiency
of RL-based job schedulers?

We address these questions in the design of RLScheduler,
a reinforcement learning based batch job scheduler. Through
extensive evaluations, we show that: first, with proper designs,
RLScheduler is capable of learning high quality scheduling
policy that is comparable to or even better than the state-
of-the-art schedulers, on various (both synthetic and real-
world) workloads or with vastly different optimization goals.
Second, the model learned by RLScheduler works generally



TABLE I: Description of job attributes.

Name [ Symbol | Description
Job ID idy the id of job
User ID o the user’s ID
Group ID gt the group’s ID
Executable 1d appt ID of the job’s executable file
Submit Time St job submission time
Requested Processors nt the number of processors that a job requests.
Requested Time Tt job’s runtime estimation (or upper bound) from users
Requested Memory mi the requested memory per processor

well even on job workloads that it never sees before, making
it sufficiently stable to be used in practice.

More importantly, this study identifies two key factors that
affect the performance of RL-based batch job scheduler: 1) the
neural network structure of the agent; and 2) the variance of
training datasets. To respond to these two factors, we propose a
kernel-based deep neural network (DNN [16]) and a trajectory
filtering mechanism in RLScheduler. We believe that these two
factors are general for other RL-based system-tuning problems
and our solutions would provide useful insights for them too.

In summary, this study makes three key contributions:

o We build RLScheduler, the first reinforcement learning
based batch job scheduler for HPC systems, to solve the
adaption issue of existing batch job schedulers.

o We identify two key factors that affect the performance
of reinforcement learning-based batch job scheduling and
introduce corresponding solutions: kernel-based neural
network and trajectory filtering mechanism to solve them.

« We conduct extensive evaluations to address the common
concerns about utilizing RL in batch job scheduling. The
results show the clear advantages of RLScheduler towards
various workloads and changing system metrics.

The remainder of this paper is organized as follows: In
8II we introduce the necessary background about HPC batch
job scheduling and deep reinforcement learning. In S§III,
we discuss the challenges of applying deep reinforcement
learning in batch job scheduling. In §IV we present the
proposed RLScheduler and its key designs and optimizations.
We present the main results (i.e. the RLScheduler and its
performances) in §V, and compare with related work in §VI.
We conclude this paper and discuss the future work in §VIL

II. BACKGROUND
A. HPC Batch Job Scheduling

This work discusses the job scheduling problem on HPC
platforms, which offer homogeneous compute resources and
host independent batch jobs. We discuss its key aspects briefly.

1) Job Attributes: On HPC platforms, a job presents several
attributes, such as User ID, Group ID, Requested Processors,
and Submission Time. Table I summarizes some broadly seen
job attributes. A more complete list of job attributes can be
found in the Standard Workload Format (SWEF) [17].

For the job schedulers using priority functions, selecting
effective job attributes and fine-tune their combinations is a
research topic, requesting manual efforts from domain experts

or extensive research [3, 7]. Comparatively, we build an RL-
based scheduler which simply takes all available job attributes
and learns the most effective features automatically.

2) Workloads: In the context of HPC batch job scheduling,
workload usually includes a number of batch jobs and the
timestamps addressing their submissions. A workload is typ-
ically characterized by the attributes of jobs and their arrival
patterns. Due to the high variability and randomness of real-
world workloads, it is hard to accurately model a workload.
Researchers often use representative statistical values to char-
acterize workloads, for example, the moments (e.g., mean,
variance) of job runtime, job size, job arrival interval [18, 19].

HPC workloads vary as new jobs submitted. But the varia-
tions may or may not change the workload characteristics. In
this work, we consider workloads changes are those significant
enough to vary the workload characteristics. For example, a
load changes from short jobs to long jobs, or from small-scale
jobs to large-scale jobs. As are expected, such changes can
impact the system performance significantly and request the
corresponding adaptions from job schedulers. We will describe
more details about workloads characteristics in §V.

3) Scheduling Goal: The performance of job schedulers is
measured by the optimization goals (or scheduling metrics).
Different metrics address different user expectations and lead
to different scheduler designs accordingly. No single metric is
considered as golden standard [19]. We summarize four widely
used metrics/goals below.

o Minimize the average waiting time (waif). It is the
average time interval (w;) between the submission and
the start of a job.

o Minimize the average response/turnaround time (resp).
It is the average time interval between the submission
time and the completion time of a job. This time is the
waiting time (w;) plus the job execution time (e;).

o Minimize the average bounded slowdown (bsld). Here,
slowdown means the ratio of job turnaround time over
its execution time ((w; +e;)/e;), which overemphasizes
short jobs with e; close to 0. The bounded slowdown
(maz((w; + ej)/maz(e;,10),1)) measures job slow-
down relative to given interactive thresholds (e.g., 10
seconds), which is considered more accurate.

o Maximize resource utilization (util), also called utiliza-
tion rate, represents the average percentage of compute
nodes allocated normalized by the entirety of nodes in
the system over a given period of time.



Previously, a scheduler is designed to optimize a fixed
metric. For example, Shortest Job First (SJF), Smallest Job
First, and F1—F4 in Carastan-Santos et al. [4] target lower-
ing average waiting time, increasing resource utilization, and
minimizing average bounded slowdown, respectively. In the
lifetime of a scheduler, when the system varies its scheduling
metric, the system administrator will tune the scheduling
policies manually. In this study, we leverage reinforcement
learning and let the learning algorithm adjust its scheduling
policies automatically for varying metrics.

4) Scheduling and Backfilling: HPC platforms may provi-
sion multiple job queues and schedule jobs in different queues
differently. Without loss of generality, batch jobs are usually
submitted to batch queues and scheduled by centralized job
schedulers with backfiling techniques enabled [6].

The process is straightforward. In batch queues, when a job
is selected, the system will seek for provisioning its requested
resources. If success, the resources will be allocated and the
job will start to run. Otherwise, the job will wait until its
request is satisfied [10]. In the mean time, backfilling can be
activated to search for the jobs whose resource allocations can
be satisfied now without affecting the planned execution for
the waiting job, to improve the efficiency of the system.

B. Reinforcement Learning

1) RL Concept: Reinforcement learning (RL) is a group
of machine learning techniques that enable agents to au-
tonomously learn in an interactive environment by trials and
errors [14, 15]. In this study, we leverage this autonomy to
build adaptive job schedulers for varying workloads and goals.
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Fig. 1: General framework of reinforcement learning.
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Fig. 1 shows a general RL framework. At each step t,
the agent observes the corresponding state S, and takes an
action A;. Consequently, the action will transfer the envi-
ronment state from S; to Si;y; and the agent will receive
the reward R;y;. In most cases, the agent does not have a
prior knowledge on the environment state or the reward, and
attain them gradually in the training process. The target of
reinforcement learning is to maximize the expected cumulative
discounted reward collected from the environment. The agent
takes actions based on policies, each defined as a probability
of taking certain action at a given state. When the state space
is enormous, memorizing all states becomes infeasible. Deep
Neural Network (DNN) can be used to estimate the probability.
The reinforcement learning using DNN to model the policy is
called Deep Reinforcement Learning (DRL).

2) RL training methods: Reinforcement learning has a large
number of training methods, classified in different ways [20].
But, a key difference among them is the training strategies,
i.e., what the RL agent learns. The policy-based RL directly
learns the policy, which will output an action given a state;
and policy gradient method is a typical example of them [21].
The value-based RL learns proper value of each state, which
can indirectly output an action by guiding the agent to move
towards better state; and Q-learning method is a typical
example [22]. Between these two methods, policy gradient
is proven to have strong convergence guarantees [21] and
become our first choice. This is mostly due to the high variance
of batch job scheduling, which may lead to oscillations in
Q-learning. To alleviate the known performance issues of
policy gradient, we follow the Actor-Critic model [23] in
RLScheduler to combine both policy-based and value-based
learning for better training efficiency. We return to this in § IV.

III. DISCUSSION ON CHALLENGES

At first glance, scheduling batch jobs with a deep reinforce-
ment learning agent seems intuitive by repeating three simple
steps: 1) take the waiting jobs and idle compute resources of
the target HPC environment as the input for a deep neural
network (DNN); 2) use the DDN as the current scheduling
policy to select a ‘best® job as the action; 3) apply the action
back to the environment. The training process repeats the
three steps until the last job in the job sequence is scheduled,
which creates one sampled trajectory, and then computes the
reward based on a given metric. With sufficient trajectories
and their rewards, the policy gradient algorithm can be used
to update the policy (DNN) to maximize expected rewards of
these trajectories, indicating a better scheduling algorithm.

Although the process is standard for all policy gradient
RL, the techniques used in each step is specific to the target
problem and can affect the training efficiency and the agent
correctness significantly. In this study, we address two key
challenges in the RL-based batch job scheduling problem.

1) RL Network Architecture: In Fig. 2, we show how an
DNN-based RL agent makes scheduling decisions: it takes
the waiting jobs and their features (e.g., aj—.,) as input
vector and outputs a probability distribution of each job being
scheduled next. The job with the highest probability (jobg
in this example) should be the selected job. One key issue
here, however, is the job orders in the waiting queue could
change easily. As ‘step 1’ shown in the figure, jobs may hold
a different position in the queue next time, for example, from
the second to the third. But, the RL’s DNN should still select
jobg as the best even its placement is different.

In general, there are two ways to achieve this. One way
is to consider the job orders in queue as the translation or
deformation of the inputs and learn these deformation by
feeding the DNN with more training data. The other option
is to make the DNN insensitive to job orders, and assign a
job with the same probability regardless its orders in the job
queue. The former approach looks intuitive. Nevertheless, it
usually requests much more training data, takes longer time
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Fig. 2: The DNN-based RL agent reads waiting jobs and
selects a job as the scheduling decision.

to converge, and may deliver lower model accuracy. In this
study, we take the latter approach and design a new kernel-
based DNN architecture to be insensitive to job orders. We
experimented on both approaches and confirmed that ours
obtains much better performance in model training efficiency
and accuracy (§V).

2) High Variance in Samples: The policy gradient algo-
rithm essentially is a Monte-Carlo method, which samples a
large number of trajectories and uses their results to adjust the
DNN (representing current policy). The key for this to work is
that these samples can accurately reflect the quality of policy,
which, however, might not be true in batch job scheduling.
For example, if a sampled job sequence arrive sparsely, then
each job can be instantly scheduled to run, their job waiting
times will be 0 no matter what scheduling policy is used. On
the contrary, if the sampled jobs arrive at the same time, their
waiting times will be relatively long no matter what scheduling
policy is used. If samples a lot of the first cases, then RL agent
may misinterpret the scheduling policy as good, which leads
to unstable or even non-converged results.
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Fig. 3: The average bounded slowdown of scheduling se-
quence of 256 jobs in PIK-IPLEX-2009 job trace.

The key is how high the variance of the batch job scheduling
can be in real world. In Fig. 3, we show an example of using
the SJF (Shortest Job First, i.e., always selecting the job with
the shortest requested runtime) scheduling algorithm to sched-
ule a sequence of 256 jobs sampled from the PIK-IPLEX-
2009 job trace, which is a real-world job trace collected from
IBM iDataPlex Cluster [17]. Here, the vertical axis shows the
average job slowdown calculated from scheduling the whole

sequence, and the horizontal axis shows the timeline of the
job trace (we show the first 10K jobs as an example).

From this figure, we can see that, in most of the time, the
job slowdown is close to 1, which indicates the jobs barely
wait in the queue. But there are short period of time (e.g.,
the red range) where the average job slowdown reaches 80K,
which indicates a really long job waiting time. The variance
is so high that it has two negative impacts. First, one ‘bad‘
trajectory will diminish what RL agent has learned as we have
discussed. Second, too many ‘good’ trajectories will barely
teach RL agent anything during training, because no matter
what scheduling policy it currently holds, the slowdown is
gonna be 1. In RLScheduler, we propose strategies to eliminate
the high variance and ensure the convergence of RL training
even facing a workload like PIK-IPLEX-2009. More details
will be discussed in the next section.

IV. DESIGN AND IMPLEMENTATION

RLScheduler uses reinforcement learning to derive adaptive
policies for scheduling HPC batch jobs towards the varying
workloads and optimization goals. Our approach is fundamen-
tally different to the previous job schedulers, which rely on
the expert knowledge about workloads, job attributes, and the
optimization goals (discussed in §II-A, §II-B). RLScheduler is
independent from the knowledge and effort from experts. The
only inputs it takes are the job traces and optimization goals,
then it learns the scheduling by itself.

This section first overviews the RLScheduler’s design and
implementation, then discusses its two key techniques: kernel-
based neural network and variance reduction methods.

A. RLScheduler Overview
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Fig. 4: The overall architecture of RLScheduler.

Observable Jobs

Fig. 4 shows the RLScheduler architecture and its three
major components: the Agent, the job scheduling Environment,
and the environment State. In each step of the training process,
the RLScheduler agent observes a state and takes an action.
The state is collected and built from the environment. The
action will be applied to the environment and consequently
generate the next state and a reward. Across steps, the agent
learns from its actions and the associated rewards.

In particular, a reward is the feedback of the environment on
an agent’s action. It serves as the key to guide the RL agent to-
wards the better policies. In RLScheduler, reward is a function



addressing a user-given optimization goal. For instance, if the
optimization goal is to minimize average bounded slowdown
(bsld), the reward can simply be reward = —bsld, which
means the RL will maximize the reward by minimizing
the average bounded slowdown. If the optimization goal is
to maximize resource utilization (util), the reward can be
reward = util, which will directly maximize the utilization.

Note that, the reward is supposed to be collected in each
learning step whenever the agent takes an action. However,
for most of the scheduling metrics, such as average waiting
time or average bounded slowdown, the calculation can not be
done until the whole job sequence gets scheduled. Thus, in the
middle of scheduling a job sequence, we just return rewards 0
to each action and calculate the accurate reward for the entire
sequence at the last action. This does not affect RL training
as only the accumulated rewards are used for training.

B. RLScheduler Kernel-based Neural Network

The RL agent’s deep neural networks play the key role in
learning. In RLScheduler, we leverage two networks: policy
network and value network following the actor-critic model,
to conduct the learning. They take the roles of generating
scheduling actions and facilitating the training respectively.

1) Policy network: The policy network takes the updated
environmental state as its input and directly outputs an action
determining which job to run next.

The key here is to make policy network insensitive to the
order of jobs (discussed in §III). To this end, we design a
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Fig. 5: The RLScheduler policy network structure. Its core is
a kernel-based neural network.

kernel-based network as the policy network. Fig. 5 shows the
network in detail. The kernel network itself is a 3-layer fully
connected network, structured the same as 3-layer perceptron
(MLP) [24]. The difference is the kernel-based network will be
applied onto each waiting job one by one like a window. For
each waiting job, the network outputs a value, a calculated
‘score’ of the job. The values of all waiting jobs form a
vector. We then run softmax on the vector to generate a
probability distribution for each waiting job. In this way, once
jobs are reordered, their probabilities will also be reordered
accordingly. This design is inspired by the kernel function in
convolutional neural networks (CNN) [25]. But, we eliminate

the pooling and fully connected layers of CNN as they are
sensitive to job orders. We later confirmed the advantage of
our proposal in the evaluation section by comparing it with
CNN and other MLP networks.

The probability distribution of each waiting job serves two
purposes: 1) during training, it is sampled to obtain the next
action. Sampling enables us to keep exploring new actions and
policies; 2) during testing, it is directly used to select job with
the highest probability to ensure the best decision. There is no
exploration anymore.

The kernel-based design makes the policy network relatively
simple. Together with the small input dimension (i.e., a single
job’s attributes each time), the parameter size of policy net-
work becomes extremely small. In RLScheduler, we are able
to control the parameter size of the policy network less than
1,000, which consequently improve the training efficiency.

2) Value network: RLScheduler also includes a value net-
work to formulate an Actor-Critic model to improve training
efficiency. It takes a entire job sequence as inputs and outputs
a value to indicate the expected reward of that sequence.

Value Network

Fig. 6: The RLScheduler value network structure. Its core is
a 3-layer multiple layer perceptron network (MLP).

Fig. 6 shows the value network internal, which is a 3-layer
MLP network, but does not have the kernel mechanism. To
work with MLP, the vectors of all jobs will be concated and
flatten before feeding into the network.

The value network is trained along with the policy network.
Specifically, for a sequence of jobs, after the policy network
makes all the scheduling decisions, we collect the rewards,
then use this to train the value network to predict the reward
of a given job sequence.

The output of value network can be intuitively considered
as the expected reward (exp,) of a set of jobs based on the
agent’s current policies. It indicates how best the agent can
do on this set of jobs historically. When we train the policy
network, instead of directly using the accumulated rewards (r)
collected from the environment, we can use (r — exp,.) to train
the policy. This difference can be intuitively considered as the
improvement of current policy over historical policies on this
set of jobs. This strategy helps reduce the variance of inputs
and lead to better training efficiency.

3) The Inputs of DNNs: The inputs of both policy and value
networks are the state, which includes both job attributes and
available resources in the systems. RLScheduler uses a vector



v; to embed such state info into each job (j). Then, multiple
jobs will form a matrix as shown in Fig. 5.

Each vector first contains all the available attributes of a job,
such as job arriving time and request processors. A full list is
shown in Table I. In addition to job attributes, the vector also
contains available resources to indicate the available resource
in the system. The priority of a job actually varies depending
on the currently available resources.

One practical issue of using DNNs to read all waiting jobs
is the number of waiting jobs changes, but our DNNs only take
fixed-size vector as inputs. To solve this, we limit RLScheduler
to only observe a fixed number (MAX_OBSV_SIZE) of jobs. If
there are fewer jobs, we pad the vector with all Os job vector; if
there are more jobs, we cut-off them selectively. The number
of observable jobs is a configurable training parameter. We
set it to 128 in RLScheduler by default, as many HPC job
management systems, such as Slurm, also limit the number
of pending jobs to the same order of magnitude [26]. When
cut-off extra jobs, we simply leverage FCFS (first come first
serve) scheduling algorithm to sort all the pending jobs and
select the top MAX_OBSV_SIZE jobs.

C. RLScheduler Variance Reduction

As discussed in §III, the high variance in HPC batch jobs
will impose significant challenges onto reinforcement learning.
When we randomly sample job sequences from real-world job
trace for training, such as the PIK-IPLEX-2009, RL agent will
experience the ‘easy sequences’ which mean any scheduling
algorithm will lead to good results and the ‘hard sequences’
which mean any scheduling algorithm will lead to bad results.
From the view of RL training, both cases are destructive: the
‘easy sequences’ do not provide any meaningful knowledge
to the agent; while the ‘hard sequences’ simply confuse it.

Recent studies have seen similar issues for training RL
in such ‘input-driven’ environments and proposed to reduce
the variances by memorizing the scheduling results for the
same job-arrival sequence and let the RL learn from the
relative improvement on its own rather than from the absolute
reward values [27, 28]. This solution has two major drawbacks
in batch job scheduling: 1) it does not solve the issue of
‘easy samples’, which could take a large portion of a real-
world job trace and do not help in training RL except taking
computation time; 2) memorizing history only helps when
there are repeated visits on the same job sequence. Given the
size of real-world job traces, for example the PIK-IPLEX-2009
has over 700K jobs, the re-visits are expected to be so rare
that the memorized history is sparse and insufficient to use.

Instead, we introduce trajectory filtering in RLScheduler.
The key idea is to filter out some job sequences during training,
so that the RL agent will see sequences with controlled
variances and learn in a more stable way. In particular, it
filters the ‘easy sequences’ out since they will not contribute
info to improve the RL agent. For the ‘non-easy sequences’,
it categorizes all sequences into two ranges and trains the RL
agent in two steps. The first step contains job sequences whose
variances fall into a specific range (R). So that the agent can

learn in a more stable way and converge faster. The second
step trains on all the job sequences. Although they still have
high variances, since the RL agent has already converged, our
experiences show that the agent is hard to be misled again.
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Fig. 7: The distribution of the average bounded slowdown of
scheduling sequence of 256 jobs in PIK-IPLEX-2009 job trace.

Then, finding a good range (R) to rule out high variant
job sequences becomes important. To do so, we use a known
heuristic scheduling algorithm, i.e., Shortest Job First (SJF),
to schedule a number of randomly sampled job sequences
from the job trace and collect their metrics values first. We
then calculate its key statistical values: median, mean, and
skewness. For a high variant job trace, such as PIK-IPLEX-
2009 trace, the resulting distribution will look like Fig. 7.
Here, x-axis is the metrics value, i.e., the average bounded
slowdown; y-axis is the number of sampled sequences whose
scheduled metrics equal to that value. We also plot its median,
mean, and 2*mean in the figure. Based on this distribution, we
simply determine the metrics range R of the first training step
as R = (median, 2 * mean). In this way, we remove the ‘easy
sequences‘ which take half of the samples (median), and also
control the variance within doubled mean, which is a much
smaller number in the highly skewed distribution.

Note that, not all job traces need trajectory filtering. Such
as SDSC-SP2, more stable job traces can be directly trained.
The scheduling metrics is also an important factor. Some
metrics, such as resource utilization typically has much smaller
variances, hence do not improve much with trajectory filtering.

D. SchedGym Environment

Training RLScheduler in a running HPC platform is im-
practical since reinforcement learning requires an enormous
number of interactions with the environment to learn. In
RLScheduler, we implement SchedGym as the simulated en-
vironment to interact with the RL agents.

SchedGym is based on OpenAl Gym toolkit [29]. It takes a
standard SWF [17] job trace as input and simulates how HPC
computation platform works. Starting from an idle cluster, it
loads jobs from job trace one by one. When new job arrives



or running job finishes, SchedGym will query the scheduler
and act based on the returned action. When the available
resources are insufficient to host the scheduled job, SchedGym
can backfill possible jobs whose executions will not impact the
jobs under scheduling. The actual runtime of a job is retrieved
from the SWF job traces. Since we target homogeneous HPC
in this study, we assume the runtime will not change. Note that,
the accurate runtime will not be available to the schedulers,
instead, only the requested runtime is available to schedulers.

V. EVALUATION
A. Evaluation Setup

We implement RLScheduler based on the Proximal Policy
Optimization (PPO) algorithm from OpenAl Spinning Up [30]
using Tensorflow [31].

The training in RLScheduler works in epoch. In each epoch,
it samples multiple trajectories from the environment. Each
trajectories includes a series of interactions between the agent
and the environment. The collected rewards will be used to
update the agent. In RLScheduler, we take 100 trajectories
in each epoch and each trajectory contains the scheduling
decisions of 256 continuous jobs. In-between epoch, RLSched-
uler runs 80 iterations to update its policy network and value
network separately. The learning rate is 10~3. More hyper-
parameters can be found in the source code' [32].

We list the job traces used in the evaluations in Table II,
and categorize them into two groups. The first group addresses
the real-world traces from SWF archive [17]. The second
group addresses the synthetic traces generated based on a
widely used workload model proposed in [18]. We used
different parameters in the model and generated two traces
with different characteristics. As the sizes of these job traces
are largely different, we leveraged the first 10K jobs from them
in our evaluations.

TABLE II: List of job traces

Name Date size ir(sec)  ri(sec) nt
SDSC-SP2 1998 128 1055 6687 11
HPC2N 2002 240 538 17024 6
PIK-IPLEX 2009 2560 140 30889 12
ANL Intrepid 2009 163840 301 5176 5063
Lublin-1 - 256 771 4862 22
Lublin-2 - 256 460 1695 39

The key characteristics of these traces are also shown
in the table, including the total number of processors in
the cluster (size), average job arrival interval (i;), average
requested runtime (7;), and average requested processors (1n;).
In summary, the job traces are quite diverse in the presented
characteristics.

To evaluate RLScheduler, we compare with existing priority
function-based schedulers, including several heuristic sched-
ulers and a state-of-the-art learning-based scheduler. Table III

Uhttps://github.com/DIR-LAB/deep-batch-scheduler

TABLE III: List of schedulers

Name priority function
FCFS score(t) = st
SJF score(t) =1y
WEFP3 score(t) = —(we/re)3 * ny
UNICEP  score(t) = —w¢/(loga(nt) * rt)
F1 score(t) = logio(rt) * ng + 870 * logio(st)

reports the priority functions used in these schedulers. Here,
FCFS schedules jobs in the same order as they were submitted
(i.e., using s;). SJF schedules jobs based on how long the job
will run (i.e., using ;). WFP3 and UNICEP [3] belong to the
scheduler family that combines multiple factors. More specif-
ically, they favor jobs that have shorter runtime, request fewer
resources, and experience longer waiting time, representing the
expert knowledge in tweaking the priority functions. Scheduler
F1 is the best scheduler selected from [4]. It was built on brute
force simulation and non-linear regression, and represents the
state-of-the-art batch job scheduler for the goal of minimizing
average bounded slowdown.

In the following subsections, we report the evaluation results
of RLScheduler under various scenarios. The results mainly
address the following questions about RLScheduler:

e Whether the new designs (kernel-based neural network
and trajectory filtering mechanism) improve the training
performance of RLScheduler?

o How well are RLScheduler’s training and performance
towards: different HPC workloads, different scheduling
metrics, or even combined scheduling metrics?

o Will a scheduling policy that RLScheduler learns still be
applicable to an unseen, new workload?

o What is the computational overhead of RLScheduler?

B. RLScheduler Design Evaluations

This section examines the key designs of RLScheduler. In
particular, we measure the performance improvement of the
kernel-based neural network and trajectory filtering mecha-
nism during RLScheduler training.

TABLE 1IV: The network configurations of different policy
network designs, including our design (RLScheduler)

Name Layers Size of each layer
MLP_v1 3 128,128,128
MLP_v2 3 32,16,8
MLP_v3 5 32,32,32,32,32
LeNet [33] 6 2x(conv2d, maxpooling2d), dense
RLScheduler 3 32,16,8

1) Kernel-based Neural Network Performance: To measure
kernel-based neural network, we compared the training effi-
ciency of RLScheduler using different policy neural networks,
including convolution neural network (CNN) and multiple
layer perceptron (MLP) networks. We selected them because



they are broadly used in similar reinforcement learning-based
system optimization studies [28, 34]. For MLP, we evaluated
three settings. For CNN, we used the standard LeNet [33].
The parameters of these networks are listed in Table IV. We
conducted all the experiments under the same setting: targeting
the same metrics (average bounded job slowdown); sharing the
same value network and hyper-parameters except the policy
network. Fig. 8 presents the training curves of different policy
neural networks on two job traces (Lublin-1 and SDSC-SP2).
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Fig. 8: The training efficiency of different RLScheduler policy
networks on two job traces (Lublin-1 and SDSC-SP2). The
horizontal axis shows the total number of training epoch; the
vertical axis shows the performance of the agent, referring to
—bsldgyg. The larger vertical axis value indicates a smaller
average bounded job slowdown and is better.

In summary, the results support two points. First, RLSched-
uler converges fast and reaches a good performance within 20
epoch, suggesting high efficiency of the kernel-based network
and the policy gradient reinforcement learning algorithm. Sec-
ond, RLScheduler with kernel-based policy network converges
much faster than other networks. We evaluated MLP with
different configurations and observed negligible difference.
LeNet recognizes jobs with the similar kernel like our solution,
but delivers much worse performance than ours. It suggests
that, the later pooling and fully connected layers in LeNet
mix the job orders and degrade the training efficiency.

2) Trajectory Filtering Performance: To measure the tra-
jectory filtering mechanism, we compared the training effi-
ciency of RLScheduler on job trace PIK-IPLEX-2009 with
and without trajectory filtering. Fig. 9 reports the results.
It shows that, without trajectory filtering, the training does
not converge even after 100 epoch; with trajectory filtering
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Fig. 9: The training curves of RLScheduler on PIK-IPLEX-
2009 job trace with and without trajectory filtering.
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enabled (the R range is (1,1460) as suggested in Fig. 7),
RLScheduler converges. When taking a closer look at the
job trace, we find that this job trace has extremely high
variance under the metrics of average bounded slowdown. Not
surprisingly, without trajectory filtering the RLScheduler agent
gets confused by the rare ‘hard sequences’. Filtering out the
sequences that have huge job slowdown hence significantly
improves the training stabilization and efficiency.

C. RLScheduler Performance on Various Job Traces

This section reports RLScheduler performance on different
job traces under the scheduling metric of average bounded
slowdown. We will discuss RLScheduler performance on dif-
ferent metrics in a separate section later.

1) Training on Different Workloads: Fig. 10 reports the
training curves of RLScheduler on different job traces, includ-
ing two real-world workloads (HPC2N and SDSC-SP2) and
two synthetic workloads (Lublin-1 and Lublin-2).
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Fig. 10: The training curves of RLScheduler on four different
workloads. Here, all vertical axis are the average bounded
slowdown calculated after scheduling the whole epoch. The
horizontal axis shows the training epoch.

The results show RLScheduler converges in all of the work-
loads within 100 training epoch, again showing its learning
efficiency. Interestingly, we observe different convergence pat-
terns across workloads. As discussed in §IV-C, this is largely
due to the different variances of the job traces themselves. And
because of this, for some job traces, it is necessary to place
the trajectory filtering to guarantee the convergence, as shown
in the previous subsection.



2) Scheduling on Different Workloads: Next we show the
performance of RLScheduler when it actually schedules the
workloads. We repeated the evaluations 10 times and reported
the average. In each experiment, we scheduled a random job
sequence that contains long continuous jobs (1,024) from the
corresponding workloads. Note that, we selected much longer
job sequences (1024) for testing than the job sequences (256)
used for training. This helps detect whether RLScheduler over-
fits the training datasets. Also, across different scheduling
algorithms, we used the same 10 random job sequences to
make fair comparisons. Table V presents the results, in which
the best scheduler for each job trace is marked bold. Here,
we show two set of scheduling results: with or without
backfilling. As an independent feature of batch job scheduler,
backfilling can be enabled/disabled on any job scheduler and
may have significant impact on the performance. Hence, we
exam RLScheduler in both cases.

TABLE V: Results of scheduling different job traces.

[ Trace ] FCFS [ WFP3 [ UNI | SJF | FI | RL |
Scheduling without Backfilling
Lublin-1 7273.8 | 19754 | 22275 | 277.35 | 258.37 | 254.67
SDSC-SP2 | 1727.5 | 3000.9 | 1848.5 | 2680.6 | 1232.1 | 466.44
HPC2N 297.18 | 426.99 | 609.77 | 157.71 | 118.01 | 117.01
Lublin-2 7842.5 | 9523.2 | 11265 | 787.89 | 698.34 | 724.51
Scheduling with Backfilling
Lublin-1 235.82 | 133.87 | 307.23 | 73.31 75.07 58.64
SDSC-SP2 | 1595.1 | 1083.1 | 548.01 | 2167.8 | 1098.2 | 397.82
HPC2N 127.38 | 97.39 175.12 | 122.04 | 71.95 86.14
Lublin-2 247.61 | 31835 | 379.59 | 91.99 148.25 | 118.79

To summarize, we draw two conclusions from these results.
First, a heuristic scheduler may perform well and poorly across
different workloads. For example, with backfilling enabled,
SJF performs the best on Lublin-2 (91.99) but performs the
worst (2167.8) on SDSC-SP2. This shows the necessity of
an adaptive scheduler, such as our RLScheduler, to work
with different workloads. Second, across the listed workloads,
RLScheduler is able to perform either comparably well to the
best or is the best among the presented schedulers. These
results conclude that, RLScheduler can adapt to different
workloads with good performance.

D. RLScheduler Performance on Different Goals

This section reports RLScheduler performance on differ-
ent optimization goals. We experimented on three metrics,
including system resource utilization, average job slowdown
and average job waiting time. We only report the results of
resource utilization in this section and leave the results of job
slowdown and job waiting time in the Appendix. Note that,
in these evaluations, we used the same training settings as the
previous ones. Only the scheduling metrics are different.

1) Training on Resource Utilization: We first report the
training curves of RLScheduler on this new metrics in Fig. 11.
The results suggest that, RLScheduler still converges towards
this new goal but with different patterns: there are more

bumps during training. Moreover, certain workloads, such as
HPC2N, seem to be improved slowly during the training (the
peeks suggest the improvements). There are two potential
reasons behind this. First, the HPC2N workload is much
more uniformed regarding this metrics. Different schedulers
actually do not change the utilization much (detailed results
are shown in Table VI). So the learning of RL is slower with
less knowledge from the training samples. Another reason is,
in general system utilization has a narrow range, which makes
the variance more noticeable for all training.
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Fig. 11: The training curves of RLScheduler in four different
job traces targeting resource utilization.

TABLE VI: Results of scheduling towards resource utilization.

[ Trace ] FCFS | WFP3 [ UNICEP | SIF [ FI [ RL |

Scheduling without Backfilling

Lublin-1 0.657 | 0.747 0.691 0.762 | 0.816 | 0.714

SDSC-SP2 | 0.670 | 0.658 0.688 0.645 | 0.674 | 0.671

HPC2N 0.638 | 0.636 0.636 0.640 | 0.637 | 0.640

Lublin-2 0.404 | 0.543 0.510 0.562 | 0.478 | 0.562
Scheduling with Backfilling

Lublin-1 0.868 | 0.864 0.883 0.778 | 0.840 | 0.850

SDSC-SP2 | 0.682 | 0.681 0.706 0.661 | 0.677 | 0.707

HPC2N 0.639 | 0.637 0.638 0.641 | 0.638 | 0.642

Lublin-2 0.587 | 0.583 0.587 0.593 | 0.552 | 0.593

2) Scheduling on Resource Utilization: Next, we explore
the RLScheduler performance on scheduling different work-
loads targeting the new goal. We used the same setting as the
previous evaluations (repeated 10 times on randomly picked
job sequences that contain 1024 continuous jobs). Table VI
presents the results, in which the best scheduler for each job
trace is marked bold. Note we have both results with or without
backfilling reported here too.

We have several observations from the results. First, a
heuristic scheduler that performs well on one goal may
perform poorly on another goal even scheduling the same
workload. For example, without backfilling, F1 performs the
best for minimizing the average bounded slowdown on Lublin-
2 (698.34), but performs one of the worst in maximizing the



TABLE VII: Performance comparisons of one RL-learned model (RL-X) being applied to other job traces (Y).

Trace | Best Heuristic Sched | Worst Heuristic Sched | RL-Lublin-I | RL-SDSC-SP2 | RL-HPC2N [ RL-Lublin-2
Scheduling without Backfilling
Lublin-1 258.37 (F1) 22274.74 (UNICEP) 254.67 482.62 283.00 334.73
SDSC-SP2 1232.06 (F1) 3000.88 (WFP3) 1543.40 466.44 1016.83 1329.41
HPC2N 118.01 (F1) 660.77 (UNICEP) 169.91 300.43 186.42 236.00
Lublin-2 698.34 (F1) 11265.3 (UNICEP) 665.49 805.16 648.52 724.51
ANL Intrepid 8.39 (F1) 35.11 (FCES) 9.91 9.61 8.93 9.75
Scheduling with Backfilling
Lublin-1 73.31 (SJF) 307.23 (UNICEP) 58.64 93.16 54.65 64.45
SDSC-SP2 548.01 (UNICEP) 2167.84 (SJF) 1364.43 397.82 746.65 1192.97
HPC2N 71.95 (F1) 175.12 (UNICEP) 115.93 128.73 115.79 144.54
Lublin-2 91.99 (SJF) 379.59 (UNICEP) 172.15 183.98 139.80 118.79
ANL Intrepid 2.73 (F1) 4.12 (UNICEP) 3.63 4.56 3.99 3.58

system utilization on the same job trace (0.478). This again
motivates the need of RLScheduler, which can be adaptive
towards different metrics. Second, for this new optimization
goal, RLScheduler still performs either comparably well to
the best or is the best among the presented schedulers, show-
ing its advantage over heuristic schedulers. Third, compared
to bounded slowdown, system utilization is the more stable
metrics. For some cases (e.g., HPC2N with backfilling), the
performance differences among different schedulers are small.
However, this does not suggest that system utilization is not
important for job schedulers designs. The small change in
the system utilization may lead to big difference in terms of
the overall cost of the cluster. These results conclude that,
RLScheduler can adapt to different optimization goals with
good performance (refer to Appendix section for results of
other two scheduling metrics).

E. RLScheduler Stabilization

One major concern about learning a batch job scheduler
from trial-and-error on a job trace is whether the learned model
would be too specific to the given job trace and can not handle
even small shifts in the workloads.

This section addresses the RLScheduler stability concern. In
particular, we experimented on applying the learned RL model
(RL-X) from job trace (X) onto other job traces (¥) and see
how it would perform. Note that, these job traces have distinct
characteristics as listed in Table II. Hence, the evaluations
result will show whether RLScheduler is sufficiently stable
for production use.

Table VII presents the results, in which the best result for
each case is marked bold. Similar to the previous performance
evaluations, for each pair of RL-X model and job trace Y,
we conducted the scheduling on 10 randomly sampled job
sequences and reported their average. We only report the best
and worst results of the heuristic schedulers (i.e., FCFS, SJF,
WEFP3, UNICEP, F1) due to the space limitation. Also, we
only reported the result under the scheduling metrics average
bounded slowdown. Other metrics show similar results.

From these results, we observed that, a learned RL-X
model, regardless of which job trace it was trained based on,
can be safely applied to other job traces Y, without making

catastrophic scheduling decisions. Although the performance
will be degraded comparing with RL-X on X, its degradation is
actually controlled: it will be no worse than using an inappro-
priate heuristic scheduler. Such a low-bound or stabilization
makes RLScheduler practical in production systems.

FE. RLScheduler with Fairness

In previous evaluations, we show RLScheduler adapts well
to each individual scheduling metric. But, in production
system, it may require to consider multiple metrics at the
same time, such as minimizing job slowdown and maximizing
resource utilization together, or minimizing job slowdown and
keeping fairness among users together. The fixed heuristic
scheduling algorithms are clumsy to handle this. However,
RLScheduler can still work via configuring its reward func-
tions. We take fairness as an example to demonstrate it.

Fairness among users is a conjugated metrics, and can be
applied upon other metrics to build per-user goals. Let’s take
‘per-user average job slowdown’ as an example. It means the
scheduler needs to consider not only the average slowdown of
all jobs, but also the average slowdown of each user’s jobs.
To optimize it, we should not starve one user nor slowdown
all jobs for strictly enforcing the fairness.

To integrate fairness into RLScheduler, we change the
reward function () from ‘average job slowdown of all jobs’
to an aggregated value of ‘average job slowdowns of each
user’. The aggregator determines the way the scheduler would
enforce the fairness. For example, we can use Maximal as the
aggregator, which means RLScheduler will focus on the user
with maximal average job slowdown and learn to prioritize the
user to minimize the overall maximal. In this way, it strives
to enhance fairness and reduce the average job slowdown at
the same time.

1) Evaluation Results: Due to the space limit, we only
report the results of ‘bounded job slowdown with fairness’ as
an example to show the performance of RLScheduler. Because
among our job traces, only SDSC-SP2 and HPC2N contain
user information, we show the results of these two traces. We
used Maximal as the aggregator and conducted the evaluations
in the same way as the previous ones (scheduled 10 randomly
picked job sequences with 1024 jobs).



TABLE VIII: Results of scheduling different job traces to-
wards bounded job slowdown with Maximal Fairness.

[ Trace | FCFS | WEP3 | UNICEP | SIE | FI | RL |
Scheduling without Backfilling
SDSC-SP2 7257 14858 12234 12185 | 8260 | 4116
HPC2N 2058 5107 5145 1255 1310 | 1147
Scheduling with Backfilling
SDSC-SP2 | 7356 8464 3840 10121 | 7799 | 2712
HPC2N 1502 2125 2081 1491 583 519

The results in Table VIII show that RLScheduler performs
the best in both job traces after considering fairness. From
these two traces, we observe that RLScheduler performs re-
markably better than the best heuristic scheduler in SDSC-SP2
trace and only slightly better in HPC2N trace. The main reason
of this difference is that, in HPC2N trace, jobs submitted from
different users are highly unbalanced. For instance, one user
(u17) submitted around 40K jobs while the average number of
jobs per-user is only 700. So, in a period of time, it is often
that only one user or small number of users are submitting
job, hence less impacted by the fairness.

In addition, RLScheduler can also work with quota-based
fairness. In this case, RLScheduler’s scheduling decisions that
are violating user’ quota will be masked illegal and ignored
similarly to the case of insufficient resources.

G. RLScheduler Computational Cost

We finally discuss the computational cost of RLScheduler.
There are mainly two computational parts in using RLSched-
uler: 1) train the model to learn the scheduling policy; 2)
inference a learned model to generate a scheduling decision.

TABLE IX: Computation cost of RLScheduler on CPU node

Name Time Cost

SJF sorts 128 jobs and picks one 0.71ms
RLScheduler DNN makes a decision 0.30ms
RLScheduler DNN training (one epoch) 123s
Converge on Lublin-1 1.1h

We timed both computations on our evaluation platform
(Intel Xeon Silver 4109T CPU and 32GB DDR4 DRAM)
and presented the results in Table IX. In summary, the trained
RLScheduler DNN can make a decision for 128 pending jobs
in 0.3ms, compared to SJF sorting the same 128 jobs in
0.7ms 2. The decision making of RLScheduler is comparably
fast. In addition, such a time cost will not grow even when
more jobs are pending in the system as more jobs will first be
cut-off to MAX_OBSV_SIZE (i.e., 128).

During RLScheduler training, one epoch takes around 123
seconds and it typically takes less than 100 epochs to converge.
Specifically, it took 1.1h to converge our training on Lublin-
1 job trace. The computation will be much faster on GPU.

Zboth implementations are based on python and can be improved

But we consider this cost is acceptable as the training is only
needed when the workload changes significantly or the metrics
changes. Both of them typically will not happen hourly.

VI. RELATED WORK

In HPC, batch job scheduling is a long-standing topic that
draws lots of attentions in HPC community [3-9, 35]. In sum-
mary, researchers take various approaches and develop various
scheduling policies, ranging from simple and classic policies
(e.g., First Come First Served (FCFS) and Shortest Job First
(SJF)) to complex policies (WFP3 and UNICEF) [3], from
linear programming [9, 36] to non-linear algorithms [37, 38]
and even neural networks [7, 8]. Being different from this
group of works, RLScheduler is built on deep reinforcement
learning and is designed to be automated to the variations on
both job loads and optimization goals.

Recently, reinforcement learning has also been studied and
leveraged in various system optimization tasks. Examples
include resource scheduling and task provisioning, such as
DeepRM [34, 39], Decima [28], and RRL [40]; resource
configuration tuning [41-43]; file system tuning [44] and per-
formance prediction [45, 46]. Although these studies leveraged
reinforcement learning methods as RLScheduler does, they
are not solving the automated batch job scheduling problem,
hence miss the key training improvement and stabilization
mechanisms proposed in RLScheduler.

F1 and several priority functions from [4] are considered as
the state-of-the-art HPC batch job scheduler. These schedulers
were built via non-linear regressing a large number of samples
generated from brute force simulations. Compared with it,
RLScheduler takes an unsupervised learning approach (rein-
forcement learning) and is accordingly automated and agile
to different training loads and optimization goals and attains
better performance in more cases.

VII. CONCLUSION AND FUTURE PLAN

This study presents RLScheduler, a deep reinforcement
learning-based job scheduler. RLScheduler learns to schedule
HPC batch jobs via its ‘trail and error’ and is capable to learn
high-quality scheduling policies for varying workloads and
optimization goals. To prove the concept, we conducted ex-
tensive evaluations and confirmed that, RLScheduler performs
well across different workloads and different optimization
goals with high stability and reasonably low computation cost.
Realizing RLScheduler is our first step. In the near future,
we plan to study more on multiple metrics optimization and
integrate it into real HPC cluster management tools such as
Slurm. Moreover, we expect to apply the knowledge and
experience we learn from this to other complex HPC settings.
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APPENDIX

In this appendix section, we report the evaluation results of
RLScheduler on other two metrics: average job slowdown and
average job waiting time.

A. RLScheduler on Average Job Slowdown

The metrics of average slowdown is very similar to the
bounded slowdown, except that we calculate job slowdown
directly using the job’s runtime without the “interactive thresh-
olds”. So short jobs with runtime close to 0 may significantly
increase its value. Fig. 12 reports the training curves of
RLScheduler on different job traces. Comparing with the
training curves of bounded slowdown shown in Fig. 10, we
observe similar convergence patterns, but with larger metrics
values (affected by the short jobs).
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Fig. 12: The training curves of RLScheduler in four different
job traces targeting job slowdown.

B. RLScheduler on Average Job Waiting Time

We repeated similar experiments with the scheduling met-
rics as minimizing the average job waiting time and report the
results here. Fig. 13 shows the training curves of RLScheduler
on different job traces. As the job waiting time may be huge,
the metrics values in the vertical axis also become much larger.
But, we can still observe similar, fast convergence patterns as
seen in the previous evaluations, showing the generality of
RLScheduler.
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Fig. 13: The training curves of RLScheduler in four different
job traces targeting job Waiting Time.

Table XI shows the scheduling results. Again, the setting
is the same as previous evaluations (scheduled 10 randomly
picked job sequences that contain 1024 jobs). From these
results, we observe that RLScheduler still performs either the
best or close to the best schedulers across all workloads.

TABLE XI: Results of scheduling towards Job Waiting Time.

[ Trace | FCFS | WEP3 | UNICEP | SIF | FI | RL

In Table X, we further show the performance of RLSched- , Scheduling without Backfilling

] hen i 1 hedules th Kloads. Wi J Lublin-1 | 241111 | 476218 | 683473 | 42509 | 18936 | 20550

uler when it actually schedules the workloads. We use SDSC-SP2 | 57850 | 85358 | 103734 | 46382 | 26146 | 18984
the same setting as the previous evaluations (scheduled 10 HPC2N 13938 | 23928 29633 7071 | 6865 | 6858
randomly picked job sequences that contain 1024 jobs). From Lublin-2 | 134542 | 178924 | 202814 | 18278 | 26104 | 17809
the results, we can observe that, although the existence of short Scheduling with Backfilling
jobs enlarges the metrics values, RLScheduler still performs Lublin-1 24887 19112 32110 | 30099 | 12692 | 12460
: SDSC-SP2 32577 26325 25392 34834 | 21830 | 13817
either comparably well or better than other schedulers. HPCON TTea o154 55 =c0 4633 5394
TABLE X: Results of scheduling towards Job Slowdown. Lublin-2 | 6300 | 8713 8155 [ 4011 | 5828 | 5172
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