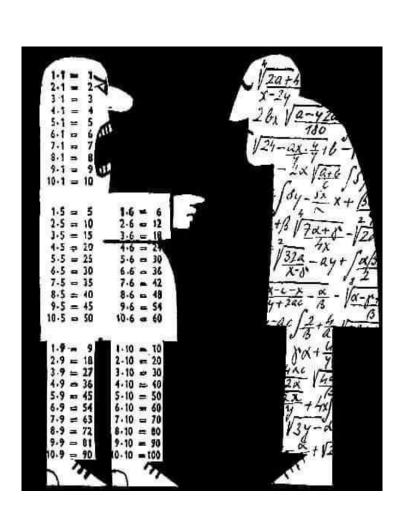


Санкт-Петербургский Государственный Политехнический Университет

Институт прикладной математики и механик


кафедра ТЕЛЕМАТИКА

Введение в профессиональную деятельность

Лекция 1 Математика и компьютерные науки Понимание, мышление ... информация, моделирование (часть 2)

3 февраля 2021 г.

Вывод из части 1: интеллектуальный не значит цифровой

Итак, что следует из предыдущей лекции:

- Объектом изучения компьютерных наук является информация.
- Информация имеет **атрибутивный** (неотъемлемое свойство предмета) и функциональный (реализация функций) аспекты
- Обработка информации является физическим процессом, который требует энергии (как минимум kТдля реализации любой необратимой функции)
- Математика пример «метафорического» описания отношений между объектами реальности, которые получены путем идеализации и формализации их атрибутивных и функциональных свойств.
- Физическая реальность состоит из множества различных вещей и процессов» именно эти различия **человек** воспринимает как «информацию».
- Способность человека воспринимать новые ситуации и различия используя не только физические сигналы от органов чувств, но и ментально, называется «интеллектом», а «пятое фундаментальное» физическое взаимодействие – ВЫЧИСЛЕНИЯ!!!

Методологическая сложность изучаемой проблемы:

- Многоплановость феномена информации в природе и социуме (выступает и как «объект» и как «предмет»);
- «Информация» выступает как междисциплинарная категория научных знаний;
- Предметная область компьютерных наук (физическая реальность, социум, техника...): телематика, компьютерные науки, ИИ, машинное обучение, киберфизика...

Информация как мера «неоднородности» сообщений:

Физическая информация - объективное свойство реальности, которое проявляется в неоднородности распределения материи (вещества и энергии) в пространстве, а также в неравномерности протекания динамических процессов в неживой природе, технических и биологических системах.

$$H = K \cdot \sum_{i=1}^{n} P_{i} \log P_{i}$$

Формула Шеннона (1949 г.)

где H — среднее количество информации в системе с выбором сообщений, с вероятностями (P_1 , P_2 ... P_n), K — константа, зависимая от единицы измерения

Колмогоров А. Н., Три подхода к определению понятия «количество

1. Комбинаторный подход I = log_2 N, где I - информация которую получаем, указывая определенное значение x = a, если x содержится в объекте, представленном как множество x, состоящее из x0 элементов. Энтропия переменного x1 равна x3 новеременного x4 равна x4 новеременного x6 годам.

Задачи:

- сколько различных «слов» можно составить из к нулей и единиц и одной двойки?
- сколько информации «содержит» такое слово ?
- почему получается I=H(x)?
- 2. Вероятностный подход I(x:e) = H(y) H(y/x), где $H(x) = -sum_x p(x) * log_2 p(x)$, $H(y/x) = -sum_y p(y/x) * log_2 p(y/x)$
- 3. Алгоритмический подход количество информации В ЧЕМ ЛИБО» (X) и О ЧЕМ ЛИБО» (У).

Используется алгоритм как СХЕМАТИЗИРОВАННОЕ ОПИСАНИЕ сложного объекта. Относительной сложностью объекта у при заданном х будет считаться I(p) - длина программы р получения у из х. Метод программирования это функция <math>f(p,x)=y

Эволюция от «прямых» алгоритмов вычислений к решению «обратных» задач

	Решение	Алгоритм	Оценка	Технологии
1	ЭВМ ← {01001100}	—— Программа — процедурный ————————————————————————————————————	«хорошее» «плохое»	Процедурное программирование
2	Нейро Сеть —	{11011001} → {01001100}	алгоритм оценки принадлежности классу («да » «нет	Машинное обучение
3	ЭВМ / HC {01001100}	{11011001} {01001100}	Критерии выбора (.)², √ <i>n</i> min, max	Интеллектуальные решения

Информационные процессы в природе и их прототипы

Информационный	Носитель	Электронный	
процесс	информации	прототип	
Получение, прием данных	Органы чувств	устройства ввода	
Обработка данных	Нервные импульсы, мышление	процессор	
Хранение данных	Генетический код, память, письменность	электронные накопители	
Передача данных	жесты, сигналы, язык	устройства вывода, компьютерные сети	

Трансформация вычислительных технологий

Тренд: от алгоритмов и **численных** решений к вычислению с помощью «примеров»

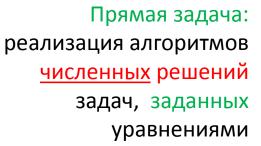
эра

эра «когнитивных» вычислений или компьютеров, управляемых данными

2020 >

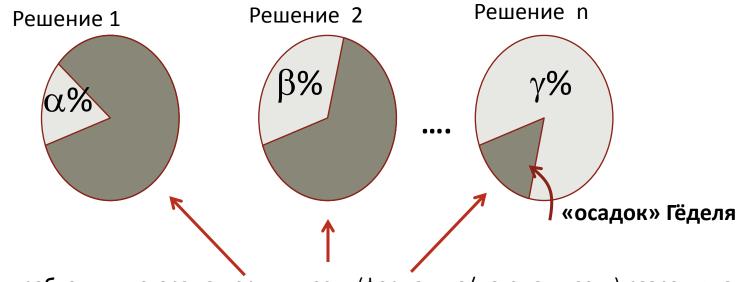
автоматов-компьютеров,

управляемых программами


1960 – 2020

эра «часов»

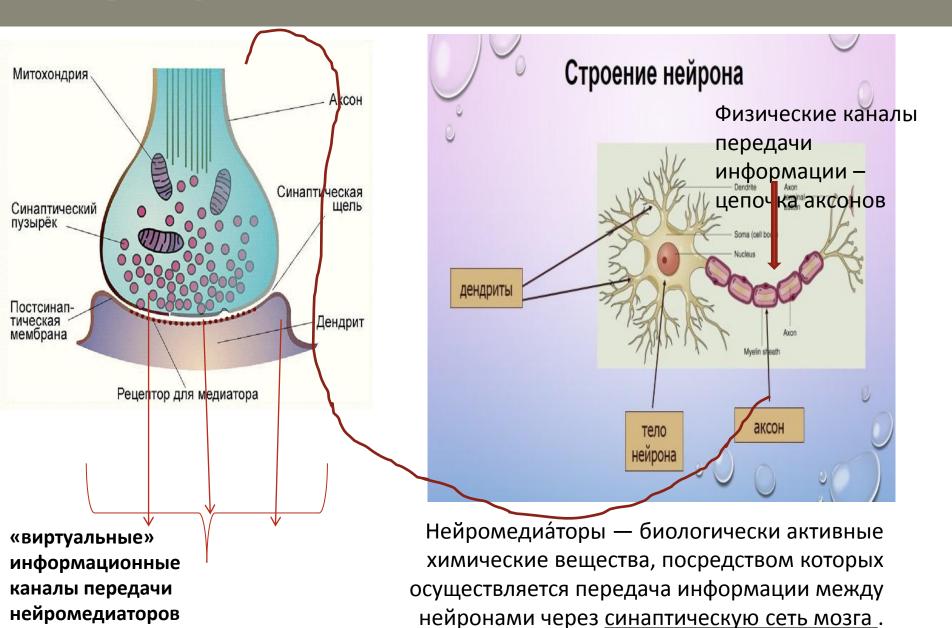
эра а**рифмометро́в** <1960



Обратная задача: нахождение алгоритмов решений задач на заданном наборе данных и условий

«К.П. Д.» формализации

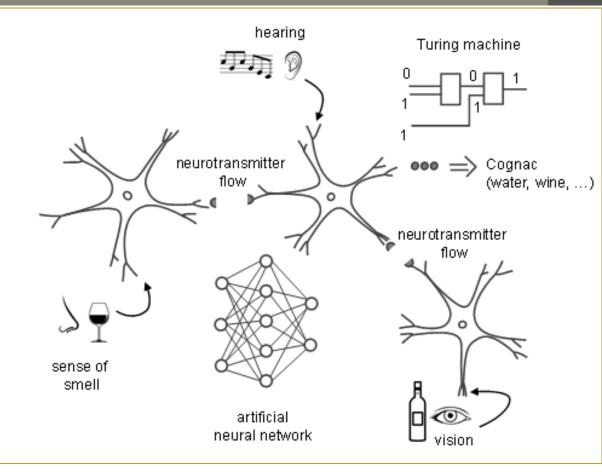
Доля «проблемы», которая алгоритмически (формально/математически) разрешима


Соотношение «неопределенности»:

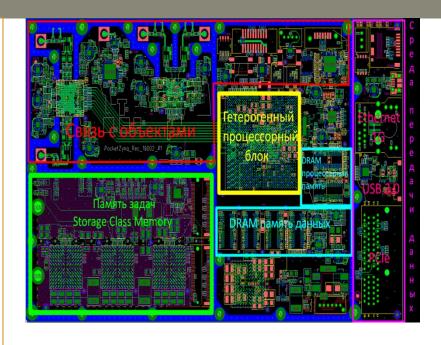
RealTime
$$_{\text{система}} << \text{RealTime}_{\text{среда}} \rightarrow \text{алгоритм (ЭВМ)}$$

RealTime
$$_{\text{система}} < \text{RealTime}_{\text{среда}} \rightarrow \text{ ACУ (ЭВМ+человек)}$$

RealTime
$$_{\text{система}} \sim \text{RealTime}_{\text{среда}} \rightarrow \text{ интеллект (Человек)}$$


Мозг как «сеть» виртуальных каналов, осуществляющих вычисления во время передачи данных

Computation theory of mind



Компоненты гетерогенной платформы уровня

Подход: формирование общего поля памяти распределенной **вычислительной среды** процессорных ресурсов класса **CPU|GPU|FPGA** и «умных» протоколов передачи данных **openCAPI |Gen-Z|CCIX.**

Компоненты платформы «конфигурируются» с учетом требований к обмену информации решаемой прикладной задачи, используя как процедурные алгоритмы, так и методы машинного обучения, основанные на обработке апостериорной информации

Результат: эффективное масштабирование процессов вычислений на трех уровнях платформы: обработки по заданным алгоритмам, агрегации с учетом статистики данных и «объяснения» результатов вычислений

Сеть виртуальных соединений программноаппаратных компонент с архитектурой **SIMD** для имитации нейронных связей, реконфигурируемых микросхем **RA** — для адаптации к алгоритмам **MPU** для проведения логико-алгебраических вычислений в рамках гибридной технологии **«computation in memory & computation in virtual channel»**

Атрибутивная концепция информации:

- Информация, как атрибут, характеризует меру сложности объектов и может проявлять себя в биологических, в технических и социальных системах.
- Существуют общие закономерности проявления информации как атрибута материи, изучение которых позволяет создавать совершенные технические системы и эффективные инженерные приложения.

Функциональная концепция информации:

- Информация, наделенная смыслом, как функция сознания человека возникает в результате процессов отражения и абстрагирования, включая результаты вычислений.
- Функция смысла информации (денотат) обозначение языковым выражением (именем) предмета или класса предметов действительности.
- Денотат это представление об объекте, а не сам объект.
 Денотат характеризует «объёмом понятия», носящего это имя или экстенсионал понятия.

Об объеме информации и смысле слов:

 «Если значения слов (объем понятия) не определены, то нет и смыслов. Если нет смыслов, то действия не происходят».

(Конфуций).

 «Определите значения слов, и вы избавите человечество от половины его заблуждений» (содержание понятий)
 (Рене Декарт). Экстенсиональная форма целостного - характеризует объем понятия путем понижением порядка абстракции - денотат)

В живом организме есть три уровня информационного взаимодействия:

Первый **—гуморальный** т.е. жидкостной, в котором взаимодействие реализуется с помощью молекул.

Второй - **клеточный** — взаимодействие происходит между клетками — (лейкоциты макрофаги и пр.)

Третий уровень — **нервная система** (вегетативная и ЦНС) — взаимодействие на уровне всего организма.

До сих пор не ясно на каком уровне **из отдельных «клеток»** образуется целостный **организм**?

«Классики» о природе информации:

Норберт Винер: «Информация – это не материя и не энергия. Это третье».

(Винер Н. Кибернетика, или Управление и связь в животном и машине. **1958 г**.)

....о природе информации Информация

Акад. В.М. Глушков: «Информация, в самом общем ее понимании, представляет собой меру неоднородности распределения материи и энергии в пространстве и времени, меру изменений, которыми сопровождаются все протекающие в мире процессы».

(Глушков В.М. О кибернетике как науке. Кибернетика, мышление, жизнь. – М.: 1964.)

Что описывают различные меры информации

- Мера снятой неопределенности, которая имеет вероятностную природу (т.е. log₂ р, где р вероятность произошедшего «события» вероятностная концепция)
- Мера сложности системы или «длина» программы, с помощью которой «рассчитывается» объект
- Мера неоднородности, разнообразия или изменений

Ментальное и физическое : феномен супервентности отношение «код - физический процесс»

Суперве́нтность (англ. Supervenience) — отношение детерминированности состояния любой системы состоянием другой системы. Набор свойств одной системы супервентен относительно набора свойств другой системы в том случае, если существование различия между двумя фактами в свойствах первой системы невозможно без существования такого же различия между двумя фактами в свойствах второй системы

Код физического процесса

Интеллектуальный субъект, «понимающий» код

Инструмент «расшифровки» кода

физический «процесс»

Супервентный характер феномена «музыка» очевиден.

Вопрос: Все ли физические процессы имеют «код»?

Примеры супервентности: 1) отсутствие различий в компьютерной программе при отсутствии различий в аппаратной конфигурации компьютера; 2) отсутствие различий в экономике при отсутствии различий в поведении экономических агентов.

Вопросов, на которые надо дать ответы

- Существует ли информация как объективная реальность?
- Какова сущностная природа информации?
- Как возникает информация?
- Где возникает информация?
- Куда «пропадает» информация?
- Как происходит восприятие информации?
- Как передается информация?
- Как связана информация с материей и энергией?
- Как связана информация с сознанием?

Фундаментальная проблема «арифметизации» знаний

С точки зрения информационного описания конкретного материального объекта или системы наблюдаемые «равновесные» состояния не различимы (в равновесном состоянии игнорируются микроскопические сущности, например, движение молекул и атомов, из которых состоит тело).

Гипотеза 1. Сущности, которые нельзя измерить, нельзя арифметизировать, т.е. знания о них не имеют числовой меры.

Гипотеза 2. Знания, которые можно арифметизировать, обладают свойством аддитивности (их можно складывать и накапливать).

Гипотеза 3. Если знания о состоянии системы удается разбить на независимые фрагменты, которые можно арифмитизировать, то числовая мера совокупного знания есть сумма числовых мер отдельных фрагментов.

Реальность и «количественная» метафора

- Математика цифровая (числовая) метафора свойств реальности. В Природе действуют не только количественные, но другие математические закономерности, а это приводит к «не идеальности» наблюдаемых физических процессов и «отклонению» от строгих математических формул.
- Законы, которые непосредственно выражаются математическими формулами, применимы к объектам, которые имеют «идеальную» цифровую модель
- Такая модель формирует «двойственные» пары:

число - слово, модель - дефиниция, представления - ощущения

...

Модели реальности физического и информационного планов

«Модель мира» - это научная абстракция 5-ого порядка, следующая за такими абстракциями как:

- Понятие (сущность естественного языка,)
- Число (носитель количественной меры)
- Алгебра (структура и свойства операций)
- Топология и отношения порядка

Модели «Мира»:

- физического плана локальные и замкнутые. Такие модели описывают реальность, в которой прошлое и будущее формально «симметрично», действует принцип физической «относительности».
- информационного плана глобальные и открытые. В них «стрела времени» физически необратима, поэтому «прошлое» физически недостижимо, действует принцип относительности по отношению к знаниям субъекта.

Вопрос, достижимо ли прошлое «информационно»?

Модель реальности как модель знаний субъекта

Модель научных знаний основана на понятии «доказуемо», которое следует законам:

- если высказывание доказуемо, оно истинно (доказать можно только истину, доказательств лжи не существует);
- логические следствия доказуемого также являются доказуемыми;
- логическое противоречие недоказуемо и т.п.
- если высказывание истинно, то неверно, что его отрицание также истинно («Если истинно, что Земля круглая, то неверно, что истинно, будто Земля плоская» и др.

Истинность или доказанность услышанного, произнесенного и вычисленного.

Ключевая идея логики знаний - истина «относительна» и зависит от

- Авторитета того, чьи слова услышаны
- Убежденности в истинности того говорит
- Правильности формул, которые используются для вычисления

Закон сохранения в форме логики «исключенного третьего»

Разница между математическими и логическими выражениями есть следствие логического закона: два противоречащих суждения об одном и том же **предмете**, взятом в одно и тоже время и в одном о том же отношении, не могут быть вместе истинными или ложными - **или а**, **или не-а или tertium non datur (третьего не дано)**

$A \vee \overline{A} = 1$

Логически осмысляя Мир, современная наука упрощает его, изучая единое целое по отдельным частям. Можно считать, «1» это цифровой код «всезнания», но применительно к «замкнутым» объектам реальности.

Заключение

Мы обсуждали Понимание, мышление ... информация, моделирование

- Человек субъект используя информацию, «входит» в физическую реальность как материальный объект живой природы.
- Однако сознание человека не является объектом, который подчиняется законом физики. Информационные законы не от субъекта, воспринимающего информацию
- Сознание как объективный феномен способно «отражать» изменения реальности и меняться, обрабатывая информацию (коэволюция), преобразуя данные в ментальные (инженерные) образы, которые затем воплощаются в объекты реальности.