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HIGH PERFORMANCE COMPUTING (HPC} =
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From Observations From Postulates From Physical Laws|
To Postulates  To Physical Laws To Predictions

Traditional HPC models and simulates theoretical science through first Human Centric
principle or experimentally. Human is involved in every step.
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DATA ANALYTICS SPEEDS SCIENTIFIC DISCOVERY
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ARTIFICIAL INTELLIGENCE (A1) Ve

Al (especially in the form of automatic model construction) is being adopted
to replace human for tedious manual tasks.
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HPDA [ HPC + Al = NEW GROWTH FOR HPC

Latest round of Al revolution driven by affordable/ubiquitous compute and vast amount of data.

Al is being adopted by all business.
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Machine Centric

Learning Methods Extraction Techniques

Ensembles or Deep Learning Dynamic response surfaces or
reduced order surrogate models

Data Sources

Detectors or physics-
based simulations

ILE

Models used to design future studies or
parameter sweeps

Diagram from J. Brown presentation, Al at Scale in Biology, Al for Science, September 2019



WHAT DOES HPC+Al CONVERGED WORKLOAD LOOK LIKE

Detection

N

viotorcycle L




TWO PATHS OF HPC + AI; HPDAVS. Al IN MOD/SIM

High Perf. Data Analytics:
Harvest patterns / insights from data

Statistical methods /
ML model

Abnormality Detection (e.g. frauds)
Recognition (e.g. face, voice, tumor, terrorist, etc.)
Recommendations (e.g. what movies you may like)

Al in Mod/Sim:
Use of ML models to speedup modeling / simulation

Example: Heat diffusion for manufacturing
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H/bridNut ConvLSTM Numerical

* “HybridNet: Integrating Model-based and Data-driven Learning to Predict
Evolution of Dynamical Systems " https://arxiv.org/pdf/1806.07439.pdf



https://arxiv.org/pdf/1806.07439.pdf

* Majority of HPC+Al today

WAYS IN COMBINING HPC AND ML (1: HPDA)

Predictive
— Model for
Explaining Data

Simulation
Data

Problem
Inputs

« Machine Learning is applied in TANDEM to model / simulation to IDENTIFY underlying data patterns
 Mod/Sim and Data Analytics run separately and use different software stacks

« Train on observed / simulation data (e.g. weather, molecular simulation, etc.)
« Datais stored in 0. Potentially an 10 problem.

Key Challenges: different management stack,
Data Management / 1O




HPDA EXAMPLE IN COSMOLOGY (COSMOFLOW (@ SC'18)

Problem: Finding the parameters that govern the universe expansion from the Big Bang

Traditional HPC approach HPDA approach
1) Scientists build universal models. 1) Train 3D CNN to create a model correlates parameters
2) Models are simulated and correlated w/ observations. and the generated models.

2) Apply model to infer observations.

Performance:
~1000x speedup on optimized IA framework
~6M times speedup with 8192 nodes

(Reduce training time from 3M to < 10min)
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International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE,
2018.



HPDA EXAMPLE IN WEATHER (DISCO (@ SC'19)

DisCo — Unsupervised Detection of Spatiotemporal Structure
Collaboration w/ UC Davis and NERSC (2018-2019)

(f) Water vapor field of CAMS5.1 climate model simulation (g) Climate local causal state field

« Target spatio-temporal data
* Requires much higher dimensions (10s to 100s)

* First distributed-memory implementation w/ scikit-learn
APl using daal4py

m
Performance:
« 30x single node speedup (via. Intel® Data
Analytics Acceleration Library (Intel® DAAL)) m
« 20,000x to 30,000x speedup with =
1024-node Cori supercomputer
@m
(a) Turbulence vorticity field (b) Turbulence state field, fine structure (c) Turbulence state field, coarse structure

A. Rupe, et. al, “DisCo: Physics-based Unsupervised Discovery of Coherent Structures in Spatiotemporal System”, submitted for SC'19 workshop



* Emerging Trend

WAYS IN COMBINING HPC AND ML (2: A1 IN MOD/SIM}

Problem Solver/Sim Simulation

Data / Results
Inputs nodel /

* Machine learning model can be trained separately, but it is USED with the solver / simulator

* Implies ML models need to be usable in native solver / simulator programming environment
(C/C++ or FORTRAN)

« Data used to train ML models are still pre-generated and stored in 10 subsystem

[ Key Challenge: Data management / 10 as well as model integration }




HPC + Al IN PARTICLE PHYSICS (ETALUMIS (@ SC'19)

Problem: Infer properties of particles and interactions from LHC at CERN

Traditional HPC approach HPC + ML approach
* Part!cle typgs are determined bY tracing the path of 1) Use forward simulation traces to train a Probabilistic
using physical model. and interactions to detection.
2) Apply model to infer observations directly from detector.
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ALIN MOD/SIM EXAMPLE IN CLIMATE | WEATHER FORECAST

Forecast model has an insatiable compute demand (EF is not enough)

ML model is accurate enough to replace part of the simulation to improve resolution

& Global forecast model
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Physical laws are presented
in a form that a computer can
compute the future state of
atmosphere from the present
state of atmosphere.

All physical variables
(temperature, pressure,
humidity, ...) are presented in
a grid with several layers.

The typical distance between
grid points is 3-15 km. The
number of vertical levels
varies typically between 50
and 150.

Limitations:

* Update cycle (3-) 6-12 h

« NWP not good in
predicting the proper time
and place of convective
rain storms

ML tackle the limitation (clouds simulation)

In orbit since 2006, The

Cloud-Aerosol Lidar
Earth observation and Infrared Pathfinder
Satellite Observation

N spacecraft uses lasers
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The model will use artificial
intelligence (Al) to learn
from averaged weather

Al data and, eventually, direct
satellite observations.

Global climate
model

High-resolution cloud models will run as Cloud simulations
cells within the climate model, guiding
its global simulation.

T. SCHNEIDER ET AL., GEOPHYSICAL RESEARCH LETTERS 44,112,396 (2017), ADAPTED BY N. DESAI/SCIENCE

lot-climate-model-driven-artificial-intelligence



https://www.sciencemag.org/news/2018/07/science-insurgents-plot-climate-model-driven-artificial-intelligence

ALIN MOD/SIM EXAMPLE DL GUIDED MONTE CARLO SIMULATION

Quantum Molecular Simulations (QMS) are commonly used to study material properties

Traditional method

is iterative and the
amount of computation
grows exponentially with
number of atoms. One
can quickly require EF

of compute with ~1000
atoms.

Goal: determine the best wave functions to describe the molecule energy

ensemble

/\

QMCPACK: One of DoE Exascale Projects
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Deep learning model is

used to guide selection of “New
Configurations” and allow
skipping of critical simulation
steps.



HPC + Al CONVERGENCE CHALLENGES

Significant increase in compute demands
« 300,000x increase in ML training demand (compare to only 10x increase in HPC demands)
* Few optimized networks outside of image / speech domains.

Not enough labelled data. Currently available labeled datasets:
 Government: 8
 Economics: 6
* Images: 25
* Sentiments: 5
* Language: 13
* Medical: 1



HPC + Al CONVERGENCE CHALLENGES

Different programming models / tools
Different resource management stacks

Different data formats, file systems

PROGRAMMING MODEL DIFFERENCE BETWEEN HPC AND Al

HPC Al

Intel® Nervana™ DL Studio

m
Intel” Math Kernel Intel” Performance Intel Python Intel” Data Anatytics Intel” Nervana™ Graph*
SR Uibrary (ML) Primitives (1PP) Distribution Acceleration Library ntel” Math Kernel Library
s (DAAL) (MKL, MKL-DNN)

TODAY'S REALITY: TWO SEPARATE WORLDS
HEGES. ANALYTICS

FORTRAN / C++ Applications Programming Java* Applications
MPI \

Hadoop*, Spark*
Mose) " Sitvieto G

Resource ~ YARN*

More resitient of hardware failures

High Performance

SLURM*
5 Manager

_ HDFS*
File System Local Storage
Storage Focused
Hardware Standard Server Components

—
. a _— =
Server Storage  Switch Infrastructure
HODs Ethernet



GAPS

Integration of ML model to mod/sim code:
ML models are described and coded at higher level frameworks (TF, Pytorch, etc.)
* Trend: Community is working on more interchangeable format (ONNX, etc.)
o Still far from plug-n-play into HPC model / simulation codes
* Need: framework to embed ML model to model / simulation codes

Custom layers:
* Most commercial customers embed their IPs in customer layers/ops
* These layers are often not optimal for CPU, GPU, ACC, etc.
* Need: optimizer to generate high performance code for CPU, GPU, ACC, etc.



SUMMARY

HPC + Al is one of the most critical emerging workloads

Challenges exist for HPC + Al convergence:
* Programming model difference
* Resource management difference

* Data management requirements / file system differences
Solutions are WIP to address resource management / 10 issues

Gaps exist in lack of tools to (1) integrate ML models with Mod/Sim code as well as (2)
generate optimal implementation for custom layers



NOTICES AND DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.
No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete
information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information
visit http://www.intel.com/benchmarks .

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a)
some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending
on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
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Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as property of others.
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Cosmology Application

* Cosmological parameters estimation using Tensorflow S

* Achieved million times speedup on Cori (using 8192 nodes of KNL)
* Single node performance improved > 1000x (~ 2x performance of Nvidia P100)
* >80% scaling efficiency on 8192 nodes KNL on Cori

* Reduced time to train from 3-month to < 10mins.
* Enable scientists to explore new science (e.g. 3 parameters estimation)
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