

Санкт-Петербургский Государственный Политехнический Университет

Институт прикладной математики и механики

кафедра ТЕЛЕМАТИКА

История и методология математики и компьютерных наук

Лекция 11

«Вычислительная основа физических законов и информационных ограничений»

часть 2

26 ноября 2020 г.

Что обсуждалось на прошлой лекции

- Количественное описание важная составляющая научной интерпретации свойств Природы. Количество информации – есть характеристика разнообразия или неопределенности, но «что такое количество информации?» различным образом решают на разных стадиях развития математики и ее приложений.
- Так в физике принят принцип информационной эквивалентности инерциальных систем координат: неопределенность описания объекта одинакова во всех инерциальных системах координат;
- Вероятностная природа результатов измерений (результат того, что принять за результат измерения) позволяет получить адекватные модели объектов как в «пространстве-времени», так и на уровне информационного описания процессов.
- Описание замкнутых и открытых систем основано на использовании разных «носителей» - алгебраических или множество объектов, информационных множество процессов-связей объектов.

Модели - числа

- По аналогии с операциями с числами, можно производить операции и со составными математическими объектами: с «кольцами», конкретными группами, полями.
- Естественные обобщения позволяют «работать» с абстрактными группами – совокупностью элементов со строго очерченными свойствами, для которых важна структура группы, а не особенность элемента группы.
- В принципе можно рассматривать «сеть» отношений между группами это уже новый математический объект категория. Сети взаимосвязей (групп, полей, пространств и т. д.) универсальны. Если Мир представить как некую алгебраическую систему, то связи между объектами можно свести к новой категории, назвав ее «реальность». Это будет множество объектов, которые преобразовываются с помощью «законов» физики.

История вопроса: от теория множеств к теории категорий

- Если окружающий Мир это мир процессов, а не мир объектов, то для его адекватного описания нужен «язык описания процессов», а не множеств.
- В рамках теории множеств считается, что любой объект исследований должен принадлежать некоторому множеству. При выполнении операций с объектами несущее множество не меняется.
- В теории категорий **преобразования** объектов (объекты аналоги множеств, преобразования аналоги отображений) входят в аксиоматическое определение наравне с объектами. В итоге объекты оказываются предельным случаем (результатом) преобразований. Предметом исследования становятся совокупности способов преобразований объектов, т.е. процессы.

Категории как «язык» описания процессов

- Особенность категорий возможность оперировать сразу всей совокупностью одинаково структурированных множеств, которые позволяет отождествить эту совокупность с пространством всех возможных состояний системы.
- В категорию наряду со структурированными объектами входят все допустимые этой структурой способы изменения объектов, т.е. преобразования состояний системы. Это позволяет заменить теоретико-множественное идеализированное представление Мира в виде "застывших" объектов на адекватное представление Мира с помощью процессов.

Подробности

- Теоретико-категорный язык богаче языка теории множеств. Для одного и того же набора множеств объектов категории может существовать много различающихся наборов морфизмов, т.е. преобразований объектов этих множеств.
- Категории с одинаковыми объектами, но различающимися морфизмами это уже различные категории.
- Неразличимые как множества объекты могут быть различимы по возможностям преобразования этих объектов.

Мир процессов – это мир времени

- Согласно современным представлениям, время это свойство открытых систем. Описание меняющихся систем, строго говоря, не доступно теоретико-множественной математике, поскольку для этих систем в различные моменты времени не выполняется аксиома экстенсиональности, требующая, в частности, тождественности множества самому себе во все моменты времени.
- Формально проблемы времени решают введением структур, в которых помимо самих множеств-объектов фигурируют некое априорное абстрактное базовое множество, играющее роль "оси времени".
- Во временном описании все состояния системы альтернативны.

Суперпозиция в пространстве состояний

- Время это специальное множество состояний, в котором истинность одних состояний из них исключает "одновременную" истинность других.
- В этом смысле пространство состояний динамического объекта как множество обладает "вневременными" свойствами: все состояния сосуществуют в нем (независимо от момента времени, в который они реализуются), находясь в абстрактной суперпозиции, а не альтернативе.
- Поиск реально осуществляющихся состояний систем среди всех потенциально возможных состояний в методологии экстремальных принципов требует умения, во-первых упорядочить состояния между собой на шкале "большеменьше", "сильнее-слабее" и т.п. и, во-вторых, выбрать экстремальное из этих состояний в полученном упорядочении

Применение экстремальных принципов для описания сложных систем

- На языке математических структур умение упорядочить структурированные множества, описывающие систему, и выбрать наиболее "сильную" (или наиболее "слабую") структуру в качестве той, что реализуется в действительности— есть умение ввести на множестве не только тривиальную количественную меру, которая есть производная от понятия «количество элементов».
- Необходимо обобщение понятия «количество» для структурированных множеств. Такое обобщение дает метод функторного сравнения структур в теоретико-категорном описании систем.

«Новые» законы

- Законы функционирования (они же законы динамической изменчивости, уравнения обобщенного движения) сформулированы далеко не для всех объектов научных исследований.
- Методология поиска таких законов составляет важную проблему теоретического знания, не решенную до настоящего времени. Пока в методах научного описания мира существует крайне ограниченный набор формальных способов вводить основные законы изменчивости исследуемых систем.
- В настоящее время законы физики даются в форме «уравнений движения» или в форме некого экстремального принципа.

Структурированные множества

 Умение сравнивать структурироавнные множества на языке теории категорий позволяет: сформулировать на этом языке экстремальный принцип, рассчитывать (а не угадывать) соответствующие функционалы и применять обобщение вариационного формализма Джейнса для самого широкого круга задач моделирования

Морфизмы и структуры

- многообразие аксиоматических систем (число их типов) ограничено: структуры порядка, топологические и алгебраические структуры
- если задана математическая структура, то всегда возможно задать сохраняющие ее морфизмы.
- Необходимость обратного утверждения для приложений не обязательна: если заданы морфизмы, то может и не существовать математической структуры с известной аксиоматикой, которую они "сохраняют".

Математическая теория категорий и функторов

- Все началось с группы гомологий.
- теория категорий и функторов является универсальной формой математического описания свойств реального Мира, которое формулируется в терминах математических (алгебраических) структур.

Роль категорий, функторов и топосов в проблеме единства естественнонаучной методологии.

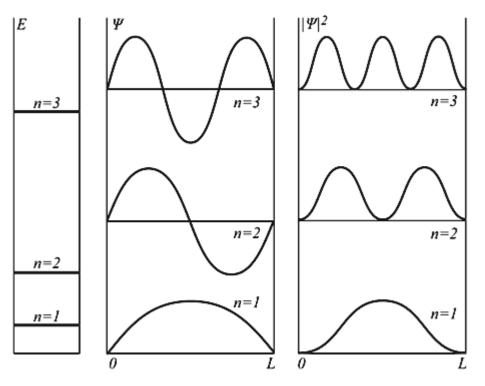
- Познание основано на «опыте распознавания структур» черзе
 - принцип суперпозиции (запутанные состояния),
 - локальность,
 - причинность

Истинность в форме законов сохранения – информационные и физические аспекты

- Преобразования состояний в комплексном евклидовом пространстве, сохраняющие вероятностную структуру этих состояний (сумма вероятностей полученных при измерении базисных состояний исходного состояния равна единице) происходят без затраты энергии и представляются вещественными числами.
- Преобразования состояний в действительном евклидовом пространстве, сохраняющие вероятностную структуру состояний (сумма вероятностей получения при измерении одного из базисных состояний исходного состояния равна единице), являются энергозатратными.

Следствия: «Законы» информационной простоты

На фундаментальном уровне реализуются самые простые информационные преобразования:


Трансляционные (сдвиг) , группы вращения, линейные преобразования координат.

Результаты измерения «наблюдаемых» при таких преобразованиях являются рациональными числами.

Предварительные выводы о реализуемости физических преобразований

- При преобразованиях систем координат неопределенность (информация) сохраняется в том и только в том случае, когда значение якобиана преобразования равно единице, а сами преобразования происходят без затраты энергии
- Неопределенность (информация) сохраняется в том и только в том случае, когда значение определителя линейного преобразования координат равно единице.

Реальность «волновых функций» состояния

Е - уровни энергии

 Ψ - Волновые функции частицы Ψ_i в прямоугольной потенциальной яме.

 $|\Psi|^2$ - квадрат модуля волновой функции или вероятность нахождения частицы в i-ом состоянии

Физические преобразования,

Суть – поиск преобразований, которые сохраняют неопределенность данных (информацию)

- Трансляционные преобразования
- Собственные вращения
- Преобразования классической механики
- Преобразования специальной теории относительности (преобразования Лоренца)

Все преобразования, которые меняют «неопределенность» состояния системы физически необратимы или нереализуемы.

Например, обращение времени «открытой» системе изменяет «неопределенность» текущего состояния системы, поэтому физически нереализуемо

Однородность и изотропность пространства физической реальности – информационные аспекты

- Пространство подразумевается существующим во времени как единое целое. Поэтому можно также говорить об едином пространстве-времени.
- Вполне уместно такое пространство полагать однородными и изотропными, что соответствует закону «информационной» простоты.
- Если это не полагать, то описание Мира стало бы более сложным, чем то, которое используется со времен Ньютона.

Выводы из «информационных» законов природы

- Физическая реализуемость трансляционного преобразования времени (сдвиг по времени) означает однородность времени.
- Физическая реализуемость трансляционного преобразования пространства (перемещение) означает однородность пространства.
- Физическая реализуемость преобразования вращения пространства означает его изотропность (т.е. связь между элементами пространства не зависит от выбранного направления).

Законы сохранения – информационные аспекты

- Из однородности времени (свойства времени во всех направлениях одинаковы) следует закон сохранения энергии.
- Из однородности пространства следует закон сохранения импульса.
- Из изотропности пространства следует закон сохранения момента импульса.

Информационная емкость Вселенной

Каков объем информации содержится во Вселенной?

- Масса обычного вещества Вселенной и черных дыр равна 10⁵² кг
- Поэтому минимальный объем информации равен 10⁹¹ бит.

Зная это можно определить структуру Вселенной с минимальным объемом информации. Максимально возможный объем информации во Вселенной содержится, если Вселенная представляет собой одну черную дыру, равен 10¹²⁰ бит.

Тогда, если во Вселенной имеются два типа массы: с квадратичной связью между информацией и массой (черные дыры), и линейной связью между информацией и массой (обычное вещество), то существует конструкция Вселенной, при которой объем информации минимален.

Вселенная массы M , состоящая из черных дыр и только из черных дыр данной массы, содержит минимально возможный объем информации I_{Bc} min=Mc²/(2kTln2) бит

Вселенная содержащая конечный объем информации эффективно познаваема

Информация и познаваемость

- Познание системы с конечной информацией внешним наблюдателем возможно тогда и только тогда, когда его разнообразие Ro превосходит разнообразие наблюдаемой системы: Rs < Ro.
- Познание части системы с конечной информацией внутренним наблюдателем возможно тогда и только тогда, когда его разнообразие Roi превосходит разнообразие наблюдаемой части системы Ros: Ros < Roi. Поскольку внутренний наблюдатель является частью системы, то его разнообразие плюс разнообразие наблюдаемой части системы не может быть больше разнообразия Rs всей системы (предполагаем, что разнообразие аддитивно) Ros + Roi ≤ Rs

Вывод (1): Общность информационного подхода

 Поскольку информационные характеристики и свойства неоднородностей, одинаковы во всех Вселенных, то одинаковы и информационные законы. Так как физические законы сохранения следуют из информационных законов, то физические законы сохранения одинаковы во всех Вселенных.
Одинаковы и информационные ограничения на другие физические законы в разных Вселенных.

Вывод (2)

- нетривиальные результаты физических теорий (например, теорема о невозможности клонирования квантового состояния, квантовая телепортация и т. п.) становятся очень естественными в категорной формулировке
- категории являются гибким «шаблоном», с уже готовыми конструкциями и теоремами, на основе которых можно строить самые разные физические теории

- Физика запрещает передачу информации «в пространствевремени» со сверхсветовой скоростью. Это объясняется принципиально вероятностным характером измерений и теоремой о запрете клонирования.
- Вероятностная природа измерений (результат того, куда перейдет суперпозиция случаен) открывает новые возможности не только описания, но и формирования реальности за счет т.н. слабых квантовых измерений (англ. weak quantum measurement), когда заданная последовательность таких измерений прерывается, когда достигнуто «желаемое» состояние.
- Стабильные и самоподдерживающимся суперпозиции могут существовать как на квантовом уровне (в «пространствевремени» так и на макроскопическом уровне (информацинновычислительное пространство)