

Санкт-Петербургский Государственный Политехнический Университет

Институт прикладной математики и механики

кафедра ТЕЛЕМАТИКА

Научный дискусс «Может ли машина мыслить» Лекция 6 вычислительные аспекты антиэнтропийного принципа эволюции

26 октября 2017 г.

Содержание:

- Неформализуемость истины, арифметичность вычислимых функций
- Модели булевых структур
- Неразрешимые уравнения, степени неразрешимости, вычисления с оракулом

Разумно vs рационально

Итак, самым сложным для изучения объектом в известной нам Вселенной является человеческий мозг.

И.Кант писал: «Всем людям свойственно нравственное чувство. Поскольку это чувство не всегда побуждает человека к поступкам, приносящим земную пользу, следовательно должно существовать некоторое основание, некоторая мотивация нравственного поведения, лежащая вне этого мира».

Объект Природы, наделенные мозгом, выполняет функцию «интерфейса» между реальным и трансцендентным Мирами, а мозг есть инструмент «антиэнтропийного» развития природы.

Три периода развития науки

Классическая наука – получение объективно-истинных знаний о мире путем редукции к идеальным объектам (сферический конь в вакууме). Формулировка законов в форме точных математических соотношений. Природа – это машина, которая подчиняется законам Ньютона

Неклассическая наука – создание квантовой и релятивистской теорий. Реальность зависит от средств ее познания (релятивистский фактора), а «точные» законы - это расчеты вероятности событий-процессов.

Случайность — это фундаментальное свойство Природы, поэтому it from bit

Постклассическая наука – учет объективного фактора сложности и постоянная «включенность» субъективной деятельности в «тело знания».

Природа должна быть такой, чтобы в ней допускалось существование наблюдателя

Механические начала науки отменяются

Редукционизм – reductio, т.е. возвращение в прежнее состояние – принцип, согласно которому высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам. (сведение сложного к простому ... применение законов физики в биологии)

ОДНАКО... переход к более «сложному» порождает новые законы, которые не проявляются для простых объектов. Сложность – геологический факт, а сложные формы организмов, которые мы не находим в настоящем, просто погибли в результате катастроф....

Итого: картина мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его концептуальными взглядами.

Исключить субъективное вообще из познания полностью невозможно.

Состояние объективного мира зависит от того, что делает наблюдатель...

Причинность в науке может иметь разные формы. Так, в классической физике причина понимается «механистически» как чисто внешняя сила, воздействующая на пассивный объект, а признанной формой выражения причинности в квантовой физике является вероятность

В квантовой физике в следствии сложности протекающих процессов, определить классическую (механическую) форму движения можно только для большой совокупности частиц, как усредненную характеристику, а о движении отдельных частиц можно говорить лишь в аспекте вероятности.

Поэтому, поведение микрообъектов подчиняется не механико-динамическим, а статистическим закономерностям. Этом случае «исчезает» не причинность, а лишь ее традиционная интерпретация, отождествляющая ее с механистическим детерминизмом как однозначной предсказуемости единичных явлений.

Наука о «совокупностях» сложных объектов

Несовместные состояния обнаруженные при изучении квантового (сложного) объекта – аналог пространства элементарных событий в теории вероятности.

Поэтому «выбор» между объективными несовместными состояниями производится «статистически» исходя их вероятностной меры, которая «рассчитывается» в квантовой механике с помощью уравнения Шредингера.

Принцип «дополнительности» Дирака есть научный компромисс: признание объективного характера «сложности». Суть научного поиска – открытие объективных законов не для отдельных (индивидуальных) объектов или элементарных частиц, а законов, которые управляют совокупностями - физика сложных объектов.

Законы для «сложноорганизованных» систем

А там, где появляется объективная вероятность, там же появляется новая сущность – информация.

Информация как difference that make the difference является формой проявления универсального принципа дополнительности, которые применяется для описания сложноорганизованных систем.

Везде, где наука сталкивается со сложностью вероятность (информация) приобретает фундаментальное значение.

Человекоразмерные системы

Объект исследования постклассической науки – «человекоразмерные» системы.

Нужны новые методы и средства, позволяющие совместно описать объективный мир физических явлений и мир человека, преодолевая разрыв в описании «объекта и наблюдающего его субъекта»

Надо исходить из того, что

«печать субъективности лежит на фундаментальных законах физики» (А. Эдингтон)

«субъект и объект едины» (Э. Шредингер)

«сознание и материя являются различными аспектами одной и той же реальности» (К. Вайцзеккер)

Антропный принцип

Наличие наблюдателя является необходимым условием для существования материальных основ картины мира.

Независимого наблюдателя, способного пассивно наблюдать и не вмешиваться в «естественный ход событий», не существует.

Важнейшим инструментом научных исследований становится математическое моделирование.

Но ... любая методология моделирования =, базирующаяся на принципах-аксиомах, имеет, согласно т. Геделя, ограниченную познавательную «мощность»

Теория сложности - Синергетика как согласованное соучастие

Сложные системы существуют благодаря тому, что реализуют «согласованное действие». Принцип «причинности» в этом случае приобретает еще одну форму – самоорганизацию, дополнительно к «внешней силе» и фундаментальной вероятности.

Кооперация или согласованное соучастие отдельных частей приводит к образованию новых макроскопических структур и функций.

Первый закон самоорганизации (применим к микро и макро масштабам) :

Неравновесные условия вызывают эффекты когерентного (согласованного) поведения элементов, которые в условиях равновесных вели бы себя независимо и автономно.

Конструктивная роль процессов хаотизации в том, что хаос – это производная от первичной неустойчивости взаимодействия сложных систем и причина спонтанного структурогенеза.

Хаос – новый вид «движения» материи

Наука о хаосе (И. Пригожин) – наука о процессах, а не о состояниях, о становлении, а не о бытии.

И. Пригожин сформулировал идею квантового измерения применительно к универсу как таковому, учет принципиальной неоднозначности поведения систем, возможность перескока с одной траектории на другую, утрату «системной» памяти, спонтанность поведения.

Изучение самоорганизации и синергетических структур вводит новые понятия: бифуркация, флуктуация (внешняя, внутренняя), диссипация (поведение в условиях флуктуаций), странные аттракторы (притягивающие множества дробной размерности), нелинейность, неопределенность.

Именно в условиях далеких от равновесия начинают действовать «бифуркационные механизмы» развития, которые являются носителями феномена «онтологической неопределенности».

феномен «онтологической неопределенности».

Неопределенностть – это вид взаимодействия, лишенный конечной устойчивой формы. Другими словами , у системы отсутствует реальный референт будущего.

Все происходит «прямо на глазах», опережая прогнозы, расчеты и ожидания.

Сложная система обладает потенциальной полнотой всех возможных изменений в пределах существующих фундаментальных физических ограничений.

В этом случае вероятность рассматривается как устойчивое распределение признаков, характеризующих совокупности возможных изменений. Случайность в этом контексте есть «динамический хаос», а статистические закономерности – законы массовых явлений, которые подчиняются закону «больших числе».

Итак, достоверно то, что подавляюще вероятно, что неискючает аналоиз неожиданных, маловероятных событий.

Режимы с обострением

За порогом неустойчивости возникают новые структуры

Структура Вселенной должна быть такой, чтобы на некотором этапе эволюции попускалось существование наблюдателей.

Глобальный эволюционизм - все, что происходило в процессе развития Вселенной было направлено на создание «наблюдателя».