ЛАБОРАТОРНАЯ РАБОТА 1. ПОЛЬЗОВАТЕЛЬСКИЕ И ГРУППОВЫЕ УЧЕТНЫЕ ЗАПИСИ. ПОЛЬЗОВАТЕЛЬСН	ИЕ ПРОФИЛИ2
Упражнение 1.1. Создание учетных записей пользователя и группы	
Упражнение 1.2. Тестирование созданной учетной записи пользователя	
Упражнение 1.3. Изменение и тестирование политики учетной записи пользоват	- еля3
Упражнение 1.4. Настройка общесистемного профиля пользователей	
Лабораторная работа 2. Делегирование полномочий	
Упражнение 2.1. Изменение контекста пользователя	
Упражнение 2.2. Передача полных полномочий администратора	
Упражнение 2.3. Передача ограниченных полномочий администратора с исполы	зованием
sudo	
Лабораторная работа З. Начальная загрузка системы	7
Упражнение 3.1. Параметры загрузки ядра операционной системы	7
Упражнение 3.2. Неисправности в процессе загрузки	7
ЛАБОРАТОРНАЯ РАБОТА 4. НАЧАЛЬНАЯ ЗАГРУЗКА И ОСТАНОВ СИСТЕМЫ	
Упражнение 4.1. Этапы начальной загрузки	8
Упражнение 4.2. Уровни исполнения системы	
Упражнение 4.3. Управление начальной загрузкой в systemd	9
Упражнение 4.4. Перезагрузка и останов системы	
Лабораторная работа 5. Ядро и драйвера устройств	
Упражнение 5.1. Драйвера устройств	
Упражнение 5.2. Переменные ядра	
ЛАБОРАТОРНАЯ РАБОТА 6. ДИСКОВЫЕ НАКОПИТЕЛИ: БАЗОВЫЕ ТОМА, НАБОРЫ ТОМОВ И ДИНАМИЧЕ	СКИЕ ТОМА. 12
Упражнение 6.1. Специальные файлы устройств дисковых накопителей. Управл	ение
базовыми томами	
Упражнение 6.2. Создание программных наборов томов (RAID-массивов)	
Упражнение 6.3. Создание динамических томов	
ЛАБОРАТОРНАЯ РАБОТА 7. ДЕРЕВО КАТАЛОГОВ И ФАЙЛОВЫЕ СИСТЕМЫ	
Упражнение 7.1. Монтирование файловых систем	14
Упражнение 7.2. Монтирование файловых систем	
Упражнение 7.3. Проверка целостности внешних файловых систем	
ЛАБОРАТОРНАЯ РАБОТА 8. КВОТИРОВАНИЕ РЕСУРСОВ ФАЙЛОВЫХ СИСТЕМ	
Упражнение 8.1. Активизация системы дискового квотирования	
Упражнение 8.2. Настройка дисковых квот для пользователей и групп	
Лабораторная работа 9. Служба периодического выполнения заданий. Служба журнализ	АЦИИ
событий. Служба печати	
Упражнение 9.1. Подсистема периодического выполнения заданий	
Упражнение 9.2. Подсистема журнализации событий. Системные журналы	
Упражнение 9.3. Средства печати UNIX	
ЛАБОРАТОРНАЯ РАБОТА 10. ГРАФИЧЕСКАЯ ПОДСИСТЕМА X WINDOW SYSTEM	
Упражнение 10.1. Х сервер	
Упражнение 10.2. Настольные окружения	
Упражнение 10.3. Графический вход в систему	
ЛАБОРАТОРНАЯ РАБОТА 11. ИНСТАЛЛЯЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	
Упражнение 11.1. Управление программным обеспечением	
Упражнение 11.2. Управление зависимостями пакетов программного обеспечени	1я 26

Лабораторная работа 1. Пользовательские и групповые учетные записи. Пользовательские профили

Упражнение 1.1. Создание учетных записей пользователя и группы

- 1. Создайте пользовательскую учетную запись **vinnie**. Зафиксируйте команду и поведение системы при создании пользовательской учетной записи:
- 2. Задайте пользовательскую информацию (GECOS) для учетной записи vinnie:
- 3. Задайте начальный пароль (по вашему усмотрению) для учетной записи vinnie:
- 4. Создайте групповую учетную запись vgroup:
- 5. Включите пользователя vinnie в группу vgroup:

Упражнение 1.2. Тестирование созданной учетной записи пользователя

- 1. Войдите в систему под учетной записью vinnie.
- 2. Зафиксируйте значения идентификаторов UID, GIDs полученного пользователя:
- 3. Измените начальный интерпретатор пользователя на dash:

- 4. Выйдите из системы и войдите в систему под учетной записью **vinnie**, проследите за изменениями:
- 5. Измените начальный интерпретатор пользователя vinnie на bash:

Упражнение 1.3. Изменение и тестирование политики учетной записи пользователя

- 1. Задайте следующую политику учетной записи vinnie:
 - а. Минимальное время действия пароля: О дней
 - b. Максимальное время действия пароля: 10 дней
 - с. Дата последней смены пароля: по умолчанию
 - d. Количество дней, за которое, до окончания срока действия пароля, предупреждается пользователь: **7 дней**
 - е. Количество дней после окончания срока действия пароля, в течение которого разрешено пользоваться учетной записью: **3 дня**
 - f. Время истечения учетной записи пользователя: никогда не истекает

- 2. Задайте дату последней смены пароля учетной записи vinnie: **6 дней назад**. (Пароль пользователя еще не истек, но напоминание уже работает):
- 3. Войдите в систему под учетной записью vinnie. Проследите за сообщением от системы:
- 4. Задайте дату последней смены пароля учетной записи vinnie: **11 дней назад**. (Пароль пользователя уже истек, но еще разрешено пользоваться учетной записью):

- 5. Войдите в систему под учетной записью vinnie. Проследите за сообщением от системы:
- 6. Задайте дату последней смены пароля учетной записи vinnie: **14 дней назад**. (Пароль пользователя уже истек, и уже не разрешено пользоваться учетной записью):
- 7. Войдите в систему под учетной записью vinnie. Проследите за сообщением от системы:
- 8. Задайте политику учетной записи пользователя vinnie так, чтобы пароль не истекал никогда:

Упражнение 1.4. Настройка общесистемного профиля пользователей

- 1. Измените общесистемный профиль для интерпретатора bash так, чтобы:
 - а. при каждом входе в систему производился вывод информации о текущих работающих пользователях и времени работы системы, прошедшего от ее запуска
 - b. первичное приглашение командного интерпретатора (значение переменной PS1)
- 2. Выйдите из системы и войдите в систему, проследите за изменениями

Лабораторная работа 2. Делегирование полномочий

Упражнение 2.1. Изменение контекста пользователя

1. При помощи команды: **SU** измените контекст текущего пользователя student на контекст пользователя vinnie, и зафиксируйте его идентификаторы UID, GID и идентификаторы вторичных групп:

2. При помощи команды: **exit** вернитесь в контекст текущего пользователя student, убедитесь в этом, проверив его идентификаторы UID, GID и идентификаторы вторичных групп:

Упражнение 2.2. Передача полных полномочий администратора

- 1. Осуществите передачу ПОЛНЫХ полномочий администратора **root** пользователю **student**:
- 2. Заблокируйте интерактивный вход для учетной записи root:

Упражнение 2.3. Передача ограниченных полномочий администратора с использованием sudo

- 1. Создайте пользовательскую учетную запись **netadmin**.
- Осуществите передачу полномочий администратора root пользователю netadmin для выполнения команд /sbin/iptables, /sbin/ifconfig, /sbin/ip, /bin/netstat, /sbin/route и редактирования файла /etc/network/interfaces:

3. Проверьте корректность делегирования полномочий, попытавшись выполнить неразрешенные пользователю **netadmin** команды от лица администратора:

Лабораторная работа 3. Начальная загрузка системы

Упражнение 3.1. Параметры загрузки ядра операционной системы

1. При помощи параметров загрузки ядра операционной системы загрузите операционную систему в **однопользовательском (single)** уровне исполнения:

2. При помощи параметров загрузки ядра операционной системы загрузите операционную систему в режиме восстановления пароля (через интерпретатор **/bin/bash**):

Упражнение 3.2. Неисправности в процессе загрузки

1. Создайте загрузочную флешку (или дополнительный диск) с загрузчиком **GRUB**:

- 2. Создайте конфигуционный файл menu, с двумя записями: 1. Загрузка ядра без параметра quite. 2. Загрузка ядра с измененным параметром init.
- 3. Перезагрузите систему. Загрузитесь с загрузочной флешки:

Лабораторная работа 4. Начальная загрузка и останов системы

Упражнение 4.1. Этапы начальной загрузки

- 1. Загрузите операционную систему Linux, убрав параметр **quite** из параметров загрузчика.
- Проследите за загрузкой и инициализацией модулей ядра, монтированием корневой и других файловой систем, запуском прародителя процессов init и служб операционной системы:

3. Ознакомьтесь с основной конфигурацией прародителя процессов init (systemd) и типами unit (юнитов) доступных в systemd. Отметьте текущий уровень исполнения системы и unit-файлы участвующие в загрузке на этом уровне исполнения:

Упражнение 4.2. Уровни исполнения системы

1. Загрузите операционную систему в однопользовательском (single) уровне исполнения.

2. Завершите сеанс однопользовательского режима работы. Проследите за реакцией системы:

3. Переведите систему на первый уровень исполнения. Проследите за реакцией системы:

4. Возвратите систему на уровень исполнения по умолчанию. Проследите за реакцией системы:

Упражнение 4.3. Управление начальной загрузкой в systemd

1. Постройте дерево загрузки unit-файлов и проанализируйте время выполненияи и загрузки использованных unit-файлов:

2. Ознакомьтесь с вариантами unit-файлов запуска и останова служб в каталоге /etc/systemd/system, обобщите смысл основных директив, выполняемых этими правилами:

3. Остановите службу cron и запустите службу exim4 с использованием systemctl:

4. Ознакомьтесь с конфигурационными файлами командных сценариев начальной загрузки: /etc/default/*, зафиксируйте названия служб, имеющих настроечные параметры в данных файлах:

Упражнение 4.4. Перезагрузка и останов системы

1. Выполните перезагрузку системы. Проследите за реакцией системы:

2. Выполните останов системы. Проследите за реакцией системы:

3. Выполните отложенный останов системы (1 минута) с оповещением пользователей. Проследите за реакцией системы:

Лабораторная работа 5. Ядро и драйвера устройств

Упражнение 5.1. Драйвера устройств

1. Проанализируйте и перечислите загруженные и активизированные драйвера устройств (как статически скомпонованных в ядро, так и динамически загружаемых):

2. Проанализируйте и перечислите конфигурацию динамически загружаемых драйверов устройств:

Упражнение 5.2. Переменные ядра

1. Проанализируйте значения переменных ядра операционной системы:

2. Измените значение переменной ядра операционной системы, отвечающей за имя узла сети, проследите за изменениями:

Лабораторная работа 6. Дисковые накопители: базовые тома, наборы томов и динамические тома

Упражнение 6.1. Специальные файлы устройств дисковых накопителей. Управление базовыми томами

1. Определите количество дисков подсистемы SCSI(SATA), установленных в системе:

2. Определите количество разделов дисков подсистемы SCSI(SATA):

3. Определите тип файловой системы на каждом из разделов дисков SCSI(SATA):

4. Разделите имеющиеся диски на 4 раздела каждый:

Упражнение 6.2. Создание программных наборов томов (RAID-массивов)

1. Создайте чередующийся набор томов /dev/md0, используя имеющиеся диски:

2.	Создайте чередующийся набор томов с четностью /dev/md/d1, используя имеющиеся диски:
3.	Создайте зеркальный набор томов /dev/md/d2, используя имеющиеся диски:
4.	Разделите полученые /dev/md/d1 и /dev/md/d2 на 2 раздела каждый:
пр	ажнение 6.3. Создание динамических томов
1.	Создайте группу томов с названием vg и два линейных динамических тома lv0, lv1 на есоснове, используя имеющиеся диски:

2. Создайте два динамических тома **mirror** (зеркало) и **stripe** (чередующийся набор томов с размером блока 8k) на основе группы **vg**, используя имеющиеся диски:

Лабораторная работа 7. Дерево каталогов и файловые системы

Упражнение 7.1. Монтирование файловых систем

1. Осуществите создание файловой системы **ext2** на флеш накопителе, с проверкой поврежденных блоков:

2. Осуществите монтирование файловой системы носителя на флеш накопителе, убедитесь в корректности файловой системы:

- 3. Размонтируйте файловую систему флеш накопителя:
- 4. Осуществите создание файловой системы msdos на флеш накопителе, с проверкой поврежденных блоков, задайте собственный текст предупреждения об отсутствии операционной системы на носителе, который будет отображаться при попытке загрузки с данного носителя:

- 5. Перегрузите операционную систему, попробуйте загрузиться с флеш накопителя. Проследите за сообщениями:
- 6. Осуществите создание файловой системы **ext3** на чередующемся наборе томов /dev/md0, созданном в лаб. 6:

- 7. Осуществите монтирование файловой системы чередующегося набора томов /dev/md0, убедитесь в корректности файловой системы:
- 8. Осуществите создание файловой системы **reiserfs** на логическом томе /dev/vg/lv0, созданном в лаб. 6:
- 9. Осуществите монтирование файловой системы логического тома /dev/vg/lv0, убедитесь в корректности файловой системы:

Упражнение 7.2. Монтирование файловых систем

- 1. Сконфигурируйте таблицу монтируемых файловых систем (**fstab**) так, что бы все разделы с файловыми системами FAT монтировались бы автоматически при старте операционной системы со следующими параметрами:
 - а. владелец файлов: псевдопользователь **bin**
 - b. группа-владелец файлов: псевдопгруппа bin
 - с. права доступа: **гwxrw-r--**
 - d. имена файлов транслировались из кодовой страницы 866 в кодировку utf8

2. Осуществите монтирование всех разделов файлов, имеющих тип FAT (**без перезагрузки**):

3. Перезагрузите операционную систему. Проследите за наличием смонтированных файловых систем, имеющих тип FAT:

Упражнение 7.3. Проверка целостности внешних файловых систем.

1. Осуществите проверку целостности всех файловых систем, созданных в упр. 7.1:

2. Осуществите проверку целостности корневой файловой системы, путем предварительного перемонтирования файловой системы в режиме **readonly**:

Лабораторная работа 8. Квотирование ресурсов файловых систем

Упражнение 8.1. Активизация системы дискового квотирования

- 1. Настройте таблицу монтируемых файловых систем так, чтобы активизировать квотирование дискового пространства на корневой файловой системе, для пользовательских и групповых учетных записей:
- 2. Активизируйте механизм дисковых квот, путем перемонтирования файловой системы с новыми параметрами:
- 3. Создайте файлы с информацией о уже использованных дисковых ресурсах файловых систем пользователями:

Упражнение 8.2. Настройка дисковых квот для пользователей и групп

- 1. Для пользователя **vinnie**:
 - а. Настройте мягкую квоту по количеству занимаемых блоков так, чтобы ее значение было немного больше текущего занимаемого этим пользователем количества блоков на диске.
 - b. Настройте жесткую квоту по количеству занимаемых блоков так, чтобы ее значение было на **1Мb** больше установленной выше мягкой квоты.
- 2. Для группы **vgroup**:
 - а. Настройте мягкую квоту по количеству файлов так, чтобы ее значение было немного больше текущего занимаемого этой группой количества файлов на диске.

- b. Настройте жесткую квоту по количеству файлов так, чтобы ее значение было на 10 файлов больше установленной выше мягкой квоты.
- 3. Для всех пользователей и групп, настройте период форы (grace period) по объему файлов в 1 минуту, а по количеству файлов в 2 минуты:
- 4. Войдите под учетной записью **vinnie** и убедитесь в действии жестких и мягких ограничений на занимаемое дисковое пространство и количество файлов путем создания в домашней директории различных файлов. Проследите за реакцией системы:

Лабораторная работа 9. Служба периодического выполнения заданий. Служба журнализации событий. Служба печати

Упражнение 9.1. Подсистема периодического выполнения заданий

- 1. Настройте подсистему периодического выполнения заданий так, чтобы:
 - ежедневно в 2 часа утра выполнялась резервная копия баз данных пользовательских учетных записей, с помещением сжатого архива с названием users-<дата создания резервной копии>.tar.gz в поддиректорию backup домашней директории суперпользователя:

• Ежедневно в 3 часа утра выполнялся поиск и удаление **старых** (возрастом более недели) архивов **баз данных пользовательских учетных записей**, в поддиректории backup, домашней директории суперпользователя:

2. Путем перевода текущего времени в системе, проверьте корректность выполнения настроенных заданий:

Упражнение 9.2. Подсистема журнализации событий. Системные журналы

- 1. Настройте подсистему журнализации событий так, чтобы:
 - a. информация о событиях высокой важности (warning, error, emerg) всех подсистем посылалась суперпользователю немедленно;

- информация о событиях процесса загрузки (facility=local7) посылалась на терминал tty10;
- с. информация о событиях всех подсистем кроме ядра, за исключением отладочной, посылалась на терминал tty11;
- d. информация о событиях ядра посылалась на терминал tty12.

- 2. Переинициализируйте подсистему журнализации событий. Проследите за сообщениями на терминалах tty10, tty11, tty12:
- 3. Перезапустите операционную систему, проследите за сообщениями на терминалах tty10, tty11, tty12:
- 4. Настройте сценарий запуска подсистемы журнализации событий так, чтобы демон syslogd разрешал возможность приема сообщений от узлов сети:
- 5. Настройте подсистему журнализации событий так, что бы вся информация о событиях всех подсистем любой важности посылалась на соседний узел сети:
- 6. Переинициализируйте подсистему журнализации событий. Проследите за сообщениями на терминалах tty10, tty11, tty12:

Упражнение 9.3. Средства печати UNIX

1. Установите систему печати сирs :
--

2. Установите виртуальный драйвер для печати в PDF в систему печати **сирs**:

- 3. Используя браузер в графической среде, зайдите по адресу http://127.0.0.1:631 и добавьте принтер с именем LocalPrinter использующий драйвер PDF.
- 4. При помощи команд lpr, lpq, lprm (lp, lpstat, cancel):
 - а. просмотрите состояния принтера с именем LocalPrinter:

b. распечатайте любой файл на принтере LocalPrinter, проследите за сообщениями:

- с. просмотрите состояния принтера LocalPrinter, проследите за сообщениями:
- d. удалите задание на печать из очереди принтера LocalPrinter, проследите за сообщениями:

e. распечатайте любую известную страницу руководства **man** на принтере LocalPrinter, проследите за сообщениями:

Лабораторная работа 10. Графическая подсистема X Window System

Упражнение 10.1. Х сервер

1. Сконфигурируйте X сервер для работы с глубиной цвета **24bpp** по умолчанию, разрешением 1024x768 по умолчанию и возможностью переключения в разрешения 800x600 и 640x480

2. Убедитесь в правильности настройки, сделанной в предыдущем пункте

Упражнение 10.2. Настольные окружения

1. Сконфигурируйте систему так, чтобы по умолчанию для всех пользователей использовалось окружение **КDE**:

2. Войдите под пользователем vinnie, удостоверьтесь в правильности конфигурации:

Упражнение 10.3. Графический вход в систему

1. Настройте автоматический запуск графической среды с использованием менеджера дисплеев kdm (sddm):

- 2. Перезагрузите операционную систему. Убедитесь, что доступен графический вход в систему.
- 3. Закончите графический сеанс работы в операционной системе.

Лабораторная работа 11. Инсталляция программного обеспечения

Упражнение 11.1. Управление программным обеспечением

Пользуйтесь только менеджероми пакетов dpkg

- 1. Получите список установленного программного обеспечения в системе:
- 2. Получите расширенную информацию о пакетах **подсистемы печати** (ключевое слово cups, **C**ommon **U**NIX **P**rinting **S**ystem) и **подсистемы журнализации событий** (ключевые слова sysklog, rsyslog):
- 3. Загрузите из соотвествующего репозитария на сервере **mirror.yandex.ru** пакет(ы) с документацией по ядру операционной системы и установите их в систему:

4. Получите список файлов, находящихся в установленном (в предыдущем пункте) пакете, удостоверьтесь в присутствии перечисленных файлов в системе:

5. Удалите пакет архиватора **zip** из системы:

Упражнение 11.2. Управление зависимостями пакетов программного обеспечения

Пользуйтесь только менеджером зависимостей пакетов apt

1. Подключите соотвествующий сетевой репозитарий пакетов с сервера mirror.yandex.ru к системе управления зависимостями и обновите локальную базу данных репозитария:

2. Инсталлируйте пакет архиватора zip в систему:

3. Установите пакет терминального мультиплексора screen в систему:

4. Проведите обновление всех пакетов до последних версий: